| | | | | | |

Core i5-10500H vs Xeon E5-2620 v4


Description
The i5-10500H is based on Comet Lake architecture while the E5-2620 v4 is based on Broadwell.

Using the multithread performance as a reference, the i5-10500H gets a score of 379 k points while the E5-2620 v4 gets 237.8 k points.

Summarizing, the i5-10500H is 1.6 times faster than the E5-2620 v4. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
a0652
406f1
Core
Comet Lake-S
Broadwell-EP
Architecture
Base frecuency
3.1 GHz
2.1 GHz
Boost frecuency
4.5 GHz
3 GHz
Socket
LGA 1200
Socket 2011-3
Cores/Threads
6/12
8/16
TDP
65 W
85 W
Cache L1 (d+i)
6x32+6x32 kB
8x32+8x32 kB
Cache L2
6x256 kB
8x256 kB
Cache L3
12288 kB
20480 kB
Date
April 2020
March 2016
Mean monothread perf.
72.1k points
29.39k points
Mean multithread perf.
378.99k points
237.83k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-10500H
E5-2620 v4
Test#1 (Integers)
4.98k
2.6k (x0.52)
Test#2 (FP)
17.92k
7.55k (x0.42)
Test#3 (Generic, ZIP)
5.81k
2.61k (x0.45)
Test#1 (Memory)
12.55k
2.03k (x0.16)
TOTAL
41.26k
14.79k (x0.36)

Multithread

i5-10500H

E5-2620 v4
Test#1 (Integers)
29.53k
17.41k (x0.59)
Test#2 (FP)
118.16k
75.46k (x0.64)
Test#3 (Generic, ZIP)
38.43k
26.25k (x0.68)
Test#1 (Memory)
5.29k
4.65k (x0.88)
TOTAL
191.41k
123.78k (x0.65)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-10500H
E5-2620 v4
Test#1 (Integers)
15.89k
8.22k (x0.52)
Test#2 (FP)
22.74k
12.06k (x0.53)
Test#3 (Generic, ZIP)
6.09k
4.01k (x0.66)
Test#1 (Memory)
12.49k
2.89k (x0.23)
TOTAL
57.21k
27.18k (x0.48)

Multithread

i5-10500H

E5-2620 v4
Test#1 (Integers)
96.8k
61.34k (x0.63)
Test#2 (FP)
149.1k
90.21k (x0.61)
Test#3 (Generic, ZIP)
39.68k
26.2k (x0.66)
Test#1 (Memory)
5.28k
4.62k (x0.88)
TOTAL
290.85k
182.37k (x0.63)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-10500H
E5-2620 v4
Test#1 (Integers)
15.86k
6.04k (x0.38)
Test#2 (FP)
24.07k
10.18k (x0.42)
Test#3 (Generic, ZIP)
5.94k
2.74k (x0.46)
Test#1 (Memory)
11.82k
2.41k (x0.2)
TOTAL
57.69k
21.37k (x0.37)

Multithread

i5-10500H

E5-2620 v4
Test#1 (Integers)
97.37k
47.51k (x0.49)
Test#2 (FP)
154.42k
75.12k (x0.49)
Test#3 (Generic, ZIP)
38.76k
19.72k (x0.51)
Test#1 (Memory)
5.4k
5.45k (x1.01)
TOTAL
295.96k
147.8k (x0.5)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-10500H
E5-2620 v4
Test#1 (Integers)
27.93k
12.16k (x0.44)
Test#2 (FP)
25.41k
11.82k (x0.47)
Test#3 (Generic, ZIP)
5.91k
3.02k (x0.51)
Test#1 (Memory)
12.85k
2.4k (x0.19)
TOTAL
72.1k
29.39k (x0.41)

Multithread

i5-10500H

E5-2620 v4
Test#1 (Integers)
176.41k
103.77k (x0.59)
Test#2 (FP)
158.8k
102.28k (x0.64)
Test#3 (Generic, ZIP)
38.53k
26.13k (x0.68)
Test#1 (Memory)
5.25k
5.65k (x1.07)
TOTAL
378.99k
237.83k (x0.63)

Performance/W
i5-10500H
E5-2620 v4
Test#1 (Integers)
2714 points/W
1221 points/W
Test#2 (FP)
2443 points/W
1203 points/W
Test#3 (Generic, ZIP)
593 points/W
307 points/W
Test#1 (Memory)
81 points/W
66 points/W
TOTAL
5831 points/W
2798 points/W

Performance/GHz
i5-10500H
E5-2620 v4
Test#1 (Integers)
6207 points/GHz
4054 points/GHz
Test#2 (FP)
5647 points/GHz
3939 points/GHz
Test#3 (Generic, ZIP)
1313 points/GHz
1005 points/GHz
Test#1 (Memory)
2856 points/GHz
799 points/GHz
TOTAL
16023 points/GHz
9798 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4