| | | | | | |

Core i5-1035G1 vs i5-12500H


Description
The i5-1035G1 is based on Ice Lake architecture while the i5-12500H is based on Alder Lake.

Using the multithread performance as a reference, the i5-1035G1 gets a score of 171.6 k points while the i5-12500H gets 225.7 k points.

Summarizing, the i5-12500H is 1.3 times faster than the i5-1035G1. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
706e5
906a3
Core
Ice Lake-U
Alder Lake-H
Architecture
Base frecuency
1 GHz
2.5 GHz
Boost frecuency
3.6 GHz
4.5 GHz
Socket
BGA 1526
BGA 1744
Cores/Threads
4/8
12/16
TDP
15 W
45 W
Cache L1 (d+i)
4x32+4x48 kB
4x32/8X64+4x48/8X32 kB
Cache L2
4x512 kB
4x1280/2x2048 kB
Cache L3
6144 kB
18432 kB
Date
August 2019
February 2022
Mean monothread perf.
55.37k points
58.37k points
Mean multithread perf.
171.65k points
225.65k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-1035G1
i5-12500H
Test#1 (Integers)
3.88k
6.93k (x1.79)
Test#2 (FP)
14.98k
18.76k (x1.25)
Test#3 (Generic, ZIP)
9.7k
9.46k (x0.98)
Test#1 (Memory)
8.6k
8.17k (x0.95)
TOTAL
37.15k
43.33k (x1.17)

Multithread

i5-1035G1

i5-12500H
Test#1 (Integers)
14.61k
18.04k (x1.23)
Test#2 (FP)
54.9k
66.78k (x1.22)
Test#3 (Generic, ZIP)
27.58k
37.55k (x1.36)
Test#1 (Memory)
5.04k
6.08k (x1.2)
TOTAL
102.13k
128.45k (x1.26)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-1035G1
i5-12500H
Test#1 (Integers)
12.89k
21.93k (x1.7)
Test#2 (FP)
18.55k
18.79k (x1.01)
Test#3 (Generic, ZIP)
9.93k
10.5k (x1.06)
Test#1 (Memory)
9.54k
8.11k (x0.85)
TOTAL
50.91k
59.33k (x1.17)

Multithread

i5-1035G1

i5-12500H
Test#1 (Integers)
50.06k
61.07k (x1.22)
Test#2 (FP)
66.1k
86.08k (x1.3)
Test#3 (Generic, ZIP)
20.24k
41.08k (x2.03)
Test#1 (Memory)
5.51k
6.02k (x1.09)
TOTAL
141.91k
194.25k (x1.37)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-1035G1
i5-12500H
Test#1 (Integers)
13.58k
21.11k (x1.56)
Test#2 (FP)
19.53k
19.61k (x1)
Test#3 (Generic, ZIP)
9.37k
9.53k (x1.02)
Test#1 (Memory)
9.23k
7.72k (x0.84)
TOTAL
51.7k
57.97k (x1.12)

Multithread

i5-1035G1

i5-12500H
Test#1 (Integers)
56.25k
61.44k (x1.09)
Test#2 (FP)
73.73k
93.66k (x1.27)
Test#3 (Generic, ZIP)
29.56k
40.09k (x1.36)
Test#1 (Memory)
5.39k
6.01k (x1.11)
TOTAL
164.94k
201.2k (x1.22)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-1035G1
i5-12500H
Test#1 (Integers)
21.5k
22.61k (x1.05)
Test#2 (FP)
17.71k
17.73k (x1)
Test#3 (Generic, ZIP)
7.92k
9.63k (x1.21)
Test#1 (Memory)
8.24k
8.4k (x1.02)
TOTAL
55.37k
58.37k (x1.05)

Multithread

i5-1035G1

i5-12500H
Test#1 (Integers)
73.03k
85.49k (x1.17)
Test#2 (FP)
68.19k
94.93k (x1.39)
Test#3 (Generic, ZIP)
24.89k
39.15k (x1.57)
Test#1 (Memory)
5.54k
6.08k (x1.1)
TOTAL
171.65k
225.65k (x1.31)

Performance/W
i5-1035G1
i5-12500H
Test#1 (Integers)
4869 points/W
1900 points/W
Test#2 (FP)
4546 points/W
2110 points/W
Test#3 (Generic, ZIP)
1660 points/W
870 points/W
Test#1 (Memory)
369 points/W
135 points/W
TOTAL
11443 points/W
5014 points/W

Performance/GHz
i5-1035G1
i5-12500H
Test#1 (Integers)
5972 points/GHz
5025 points/GHz
Test#2 (FP)
4919 points/GHz
3939 points/GHz
Test#3 (Generic, ZIP)
2201 points/GHz
2139 points/GHz
Test#1 (Memory)
2290 points/GHz
1867 points/GHz
TOTAL
15381 points/GHz
12971 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4