| | | | | | |

Ryzen 7 3800X vs Core i7-6600U


Description
The 3800X is based on Zen 2 architecture while the i7-6600U is based on Skylake.

Using the multithread performance as a reference, the 3800X gets a score of 497.7 k points while the i7-6600U gets 79.2 k points.

Summarizing, the 3800X is 6.3 times faster than the i7-6600U. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
870f10
406e3
Core
Matisse
Skylake-U
Architecture
Base frecuency
3.9 GHz
2.6 GHz
Boost frecuency
4.5 GHz
3.4 GHz
Socket
AM4
BGA1356
Cores/Threads
8/16
2/4
TDP
105 W
15 W
Cache L1 (d+i)
8x32+8x32 kB
2x32+2x32 kB
Cache L2
8x512 kB
2x256 kB
Cache L3
32768 kB
4096 kB
Date
July 2019
September 2015
Mean monothread perf.
75.81k points
39.73k points
Mean multithread perf.
497.74k points
79.22k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
3800X
i7-6600U
Test#1 (Integers)
4.47k
2.75k (x0.61)
Test#2 (FP)
17.41k
12.23k (x0.7)
Test#3 (Generic, ZIP)
8.23k
3.9k (x0.47)
Test#1 (Memory)
25.15k
5.61k (x0.22)
TOTAL
55.26k
24.48k (x0.44)

Multithread

3800X

i7-6600U
Test#1 (Integers)
36.1k
5.23k (x0.14)
Test#2 (FP)
178.65k
25k (x0.14)
Test#3 (Generic, ZIP)
95.98k
8.98k (x0.09)
Test#1 (Memory)
16.03k
4.73k (x0.3)
TOTAL
326.76k
43.95k (x0.13)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
3800X
i7-6600U
Test#1 (Integers)
17.17k
6.76k (x0.39)
Test#2 (FP)
25.32k
9.58k (x0.38)
Test#3 (Generic, ZIP)
8.36k
2.46k (x0.29)
Test#1 (Memory)
27.86k
4.18k (x0.15)
TOTAL
78.71k
22.99k (x0.29)

Multithread

3800X

i7-6600U
Test#1 (Integers)
136.06k
14.37k (x0.11)
Test#2 (FP)
195.06k
23.79k (x0.12)
Test#3 (Generic, ZIP)
97.81k
5.71k (x0.06)
Test#1 (Memory)
12.91k
4.29k (x0.33)
TOTAL
441.85k
48.16k (x0.11)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
3800X
i7-6600U
Test#1 (Integers)
16.76k
8.49k (x0.51)
Test#2 (FP)
25.16k
10.92k (x0.43)
Test#3 (Generic, ZIP)
8.76k
2.76k (x0.32)
Test#1 (Memory)
24.3k
4.93k (x0.2)
TOTAL
74.98k
27.1k (x0.36)

Multithread

3800X

i7-6600U
Test#1 (Integers)
131.36k
14.11k (x0.11)
Test#2 (FP)
198.51k
20.05k (x0.1)
Test#3 (Generic, ZIP)
97.27k
6.17k (x0.06)
Test#1 (Memory)
13.4k
4.73k (x0.35)
TOTAL
440.54k
45.05k (x0.1)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
3800X
i7-6600U
Test#1 (Integers)
17.1k
16.72k (x0.98)
Test#2 (FP)
26.59k
14.7k (x0.55)
Test#3 (Generic, ZIP)
8.91k
3.4k (x0.38)
Test#1 (Memory)
23.21k
4.9k (x0.21)
TOTAL
75.81k
39.73k (x0.52)

Multithread

3800X

i7-6600U
Test#1 (Integers)
172.04k
33.41k (x0.19)
Test#2 (FP)
214.03k
31.66k (x0.15)
Test#3 (Generic, ZIP)
97.1k
8.18k (x0.08)
Test#1 (Memory)
14.57k
5.97k (x0.41)
TOTAL
497.74k
79.22k (x0.16)

Performance/W
3800X
i7-6600U
Test#1 (Integers)
1638 points/W
2227 points/W
Test#2 (FP)
2038 points/W
2111 points/W
Test#3 (Generic, ZIP)
925 points/W
546 points/W
Test#1 (Memory)
139 points/W
398 points/W
TOTAL
4740 points/W
5282 points/W

Performance/GHz
3800X
i7-6600U
Test#1 (Integers)
3799 points/GHz
4919 points/GHz
Test#2 (FP)
5909 points/GHz
4325 points/GHz
Test#3 (Generic, ZIP)
1981 points/GHz
999 points/GHz
Test#1 (Memory)
5158 points/GHz
1441 points/GHz
TOTAL
16847 points/GHz
11684 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4