| | | | | | |

Ryzen 7 3800X vs Core i5-12400F


Description
The 3800X is based on Zen 2 architecture while the i5-12400F is based on Alder Lake.

Using the multithread performance as a reference, the 3800X gets a score of 497.7 k points while the i5-12400F gets 399.4 k points.

Summarizing, the 3800X is 1.2 times faster than the i5-12400F. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
870f10
90675
Core
Matisse
Alder Lake-S
Architecture
Base frecuency
3.9 GHz
2.5 GHz
Boost frecuency
4.5 GHz
4.4 GHz
Socket
AM4
LGA 1700
Cores/Threads
8/16
6/12
TDP
105 W
117 W
Cache L1 (d+i)
8x32+8x32 kB
6x32/0x64+6x48/0x32 kB
Cache L2
8x512 kB
6x1280+0x2048 kB
Cache L3
32768 kB
18432 kB
Date
July 2019
January 2022
Mean monothread perf.
75.81k points
76.46k points
Mean multithread perf.
497.74k points
399.39k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
3800X
i5-12400F
Test#1 (Integers)
4.47k
7.43k (x1.66)
Test#2 (FP)
17.41k
18.64k (x1.07)
Test#3 (Generic, ZIP)
8.23k
13.15k (x1.6)
Test#1 (Memory)
25.15k
14.82k (x0.59)
TOTAL
55.26k
54.04k (x0.98)

Multithread

3800X

i5-12400F
Test#1 (Integers)
36.1k
36.23k (x1)
Test#2 (FP)
178.65k
134.76k (x0.75)
Test#3 (Generic, ZIP)
95.98k
84.06k (x0.88)
Test#1 (Memory)
16.03k
16.71k (x1.04)
TOTAL
326.76k
271.76k (x0.83)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
3800X
i5-12400F
Test#1 (Integers)
17.17k
24.18k (x1.41)
Test#2 (FP)
25.32k
23.85k (x0.94)
Test#3 (Generic, ZIP)
8.36k
14.42k (x1.73)
Test#1 (Memory)
27.86k
14.87k (x0.53)
TOTAL
78.71k
77.32k (x0.98)

Multithread

3800X

i5-12400F
Test#1 (Integers)
136.06k
122.98k (x0.9)
Test#2 (FP)
195.06k
168.77k (x0.87)
Test#3 (Generic, ZIP)
97.81k
96.11k (x0.98)
Test#1 (Memory)
12.91k
16.32k (x1.26)
TOTAL
441.85k
404.19k (x0.91)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
3800X
i5-12400F
Test#1 (Integers)
16.76k
24.24k (x1.45)
Test#2 (FP)
25.16k
24.74k (x0.98)
Test#3 (Generic, ZIP)
8.76k
13.95k (x1.59)
Test#1 (Memory)
24.3k
14.47k (x0.6)
TOTAL
74.98k
77.41k (x1.03)

Multithread

3800X

i5-12400F
Test#1 (Integers)
131.36k
126.87k (x0.97)
Test#2 (FP)
198.51k
186.48k (x0.94)
Test#3 (Generic, ZIP)
97.27k
92.37k (x0.95)
Test#1 (Memory)
13.4k
15.45k (x1.15)
TOTAL
440.54k
421.18k (x0.96)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
3800X
i5-12400F
Test#1 (Integers)
17.1k
33.85k (x1.98)
Test#2 (FP)
26.59k
20.33k (x0.76)
Test#3 (Generic, ZIP)
8.91k
10.51k (x1.18)
Test#1 (Memory)
23.21k
11.77k (x0.51)
TOTAL
75.81k
76.46k (x1.01)

Multithread

3800X

i5-12400F
Test#1 (Integers)
172.04k
174.21k (x1.01)
Test#2 (FP)
214.03k
141.31k (x0.66)
Test#3 (Generic, ZIP)
97.1k
64.86k (x0.67)
Test#1 (Memory)
14.57k
19.01k (x1.3)
TOTAL
497.74k
399.39k (x0.8)

Performance/W
3800X
i5-12400F
Test#1 (Integers)
1638 points/W
1489 points/W
Test#2 (FP)
2038 points/W
1208 points/W
Test#3 (Generic, ZIP)
925 points/W
554 points/W
Test#1 (Memory)
139 points/W
162 points/W
TOTAL
4740 points/W
3414 points/W

Performance/GHz
3800X
i5-12400F
Test#1 (Integers)
3799 points/GHz
7693 points/GHz
Test#2 (FP)
5909 points/GHz
4621 points/GHz
Test#3 (Generic, ZIP)
1981 points/GHz
2389 points/GHz
Test#1 (Memory)
5158 points/GHz
2675 points/GHz
TOTAL
16847 points/GHz
17378 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4