| | | | | | |

Ryzen 5 2400G vs Core i5-8500T


Description
The 2400G is based on Zen architecture while the i5-8500T is based on Coffee Lake.

Using the multithread performance as a reference, the 2400G gets a score of 198.3 k points while the i5-8500T gets 251.8 k points.

Summarizing, the i5-8500T is 1.3 times faster than the 2400G. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
810f10
906ea
Core
Raven Ridge
Coffee Lake-S
Architecture
Base frecuency
3.6 GHz
2.1 GHz
Boost frecuency
3.9 GHz
3.5 GHz
Socket
AM4
LGA 1151
Cores/Threads
4/8
6/6
TDP
65 W
35 W
Cache L1 (d+i)
4x64+4x32 kB
6x32+6x32 kB
Cache L2
4x512 kB
6x256 kB
Cache L3
4096 kB
9216 kB
Date
January 2018
March 2018
Mean monothread perf.
47.96k points
59.27k points
Mean multithread perf.
198.27k points
251.82k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
2400G
i5-8500T
Test#1 (Integers)
3.8k
3.56k (x0.94)
Test#2 (FP)
17.38k
14.76k (x0.85)
Test#3 (Generic, ZIP)
5.17k
4.46k (x0.86)
Test#1 (Memory)
3.16k
8.72k (x2.76)
TOTAL
29.52k
31.5k (x1.07)

Multithread

2400G

i5-8500T
Test#1 (Integers)
15.28k
19.37k (x1.27)
Test#2 (FP)
76.44k
82.35k (x1.08)
Test#3 (Generic, ZIP)
27.48k
24.6k (x0.9)
Test#1 (Memory)
3.02k
2.97k (x0.98)
TOTAL
122.2k
129.29k (x1.06)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
2400G
i5-8500T
Test#1 (Integers)
13.95k
12.93k (x0.93)
Test#2 (FP)
20.7k
18.61k (x0.9)
Test#3 (Generic, ZIP)
5.33k
4.76k (x0.89)
Test#1 (Memory)
3.03k
10.05k (x3.32)
TOTAL
43.01k
46.36k (x1.08)

Multithread

2400G

i5-8500T
Test#1 (Integers)
58.56k
71.15k (x1.21)
Test#2 (FP)
92.95k
102.74k (x1.11)
Test#3 (Generic, ZIP)
28.55k
26.6k (x0.93)
Test#1 (Memory)
2.98k
2.9k (x0.97)
TOTAL
183.04k
203.39k (x1.11)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
2400G
i5-8500T
Test#1 (Integers)
13.04k
12.92k (x0.99)
Test#2 (FP)
22.35k
19.47k (x0.87)
Test#3 (Generic, ZIP)
5.37k
4.62k (x0.86)
Test#1 (Memory)
3.4k
9.6k (x2.82)
TOTAL
44.15k
46.6k (x1.06)

Multithread

2400G

i5-8500T
Test#1 (Integers)
56.49k
71.25k (x1.26)
Test#2 (FP)
100.74k
91.16k (x0.9)
Test#3 (Generic, ZIP)
28.21k
24.45k (x0.87)
Test#1 (Memory)
3.04k
2.85k (x0.94)
TOTAL
188.49k
189.71k (x1.01)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
2400G
i5-8500T
Test#1 (Integers)
14.2k
23.13k (x1.63)
Test#2 (FP)
23.23k
20.7k (x0.89)
Test#3 (Generic, ZIP)
5.35k
4.71k (x0.88)
Test#1 (Memory)
5.18k
10.73k (x2.07)
TOTAL
47.96k
59.27k (x1.24)

Multithread

2400G

i5-8500T
Test#1 (Integers)
58.24k
125.17k (x2.15)
Test#2 (FP)
105.72k
98.07k (x0.93)
Test#3 (Generic, ZIP)
28.73k
25.57k (x0.89)
Test#1 (Memory)
5.59k
3.01k (x0.54)
TOTAL
198.27k
251.82k (x1.27)

Performance/W
2400G
i5-8500T
Test#1 (Integers)
896 points/W
3576 points/W
Test#2 (FP)
1626 points/W
2802 points/W
Test#3 (Generic, ZIP)
442 points/W
731 points/W
Test#1 (Memory)
86 points/W
86 points/W
TOTAL
3050 points/W
7195 points/W

Performance/GHz
2400G
i5-8500T
Test#1 (Integers)
3641 points/GHz
6608 points/GHz
Test#2 (FP)
5957 points/GHz
5914 points/GHz
Test#3 (Generic, ZIP)
1372 points/GHz
1346 points/GHz
Test#1 (Memory)
1327 points/GHz
3067 points/GHz
TOTAL
12298 points/GHz
16934 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4