| | | | | | |

Core i5-12400F vs i9-9900K


Description
The i5-12400F is based on Alder Lake architecture while the i9-9900K is based on Coffee Lake.

Using the multithread performance as a reference, the i5-12400F gets a score of 399.4 k points while the i9-9900K gets 529.3 k points.

Summarizing, the i9-9900K is 1.3 times faster than the i5-12400F. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
90675
906ed
Core
Alder Lake-S
Coffee Lake-S
Architecture
Base frecuency
2.5 GHz
3.6 GHz
Boost frecuency
4.4 GHz
5 GHz
Socket
LGA 1700
LGA 1151
Cores/Threads
6/12
8/16
TDP
117 W
95 W
Cache L1 (d+i)
6x32/0x64+6x48/0x32 kB
8x32+8x32 kB
Cache L2
6x1280+0x2048 kB
8x256 kB
Cache L3
18432 kB
16384 kB
Date
January 2022
October 2018
Mean monothread perf.
76.46k points
81.91k points
Mean multithread perf.
399.39k points
529.32k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-12400F
i9-9900K
Test#1 (Integers)
7.43k
5k (x0.67)
Test#2 (FP)
18.64k
20.22k (x1.08)
Test#3 (Generic, ZIP)
13.15k
6.54k (x0.5)
Test#1 (Memory)
14.82k
13.78k (x0.93)
TOTAL
54.04k
45.53k (x0.84)

Multithread

i5-12400F

i9-9900K
Test#1 (Integers)
36.23k
36.39k (x1)
Test#2 (FP)
134.76k
166.55k (x1.24)
Test#3 (Generic, ZIP)
84.06k
54.92k (x0.65)
Test#1 (Memory)
16.71k
8.96k (x0.54)
TOTAL
271.76k
266.82k (x0.98)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-12400F
i9-9900K
Test#1 (Integers)
24.18k
18.03k (x0.75)
Test#2 (FP)
23.85k
25.98k (x1.09)
Test#3 (Generic, ZIP)
14.42k
6.86k (x0.48)
Test#1 (Memory)
14.87k
14.5k (x0.98)
TOTAL
77.32k
65.37k (x0.85)

Multithread

i5-12400F

i9-9900K
Test#1 (Integers)
122.98k
131.34k (x1.07)
Test#2 (FP)
168.77k
204.76k (x1.21)
Test#3 (Generic, ZIP)
96.11k
55.74k (x0.58)
Test#1 (Memory)
16.32k
8.99k (x0.55)
TOTAL
404.19k
400.83k (x0.99)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-12400F
i9-9900K
Test#1 (Integers)
24.24k
17.98k (x0.74)
Test#2 (FP)
24.74k
27.04k (x1.09)
Test#3 (Generic, ZIP)
13.95k
6.63k (x0.48)
Test#1 (Memory)
14.47k
13.6k (x0.94)
TOTAL
77.41k
65.24k (x0.84)

Multithread

i5-12400F

i9-9900K
Test#1 (Integers)
126.87k
130.88k (x1.03)
Test#2 (FP)
186.48k
208.5k (x1.12)
Test#3 (Generic, ZIP)
92.37k
54.12k (x0.59)
Test#1 (Memory)
15.45k
8.91k (x0.58)
TOTAL
421.18k
402.41k (x0.96)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-12400F
i9-9900K
Test#1 (Integers)
33.85k
32.08k (x0.95)
Test#2 (FP)
20.33k
28.17k (x1.39)
Test#3 (Generic, ZIP)
10.51k
6.68k (x0.63)
Test#1 (Memory)
11.77k
14.98k (x1.27)
TOTAL
76.46k
81.91k (x1.07)

Multithread

i5-12400F

i9-9900K
Test#1 (Integers)
174.21k
242.98k (x1.39)
Test#2 (FP)
141.31k
220.16k (x1.56)
Test#3 (Generic, ZIP)
64.86k
53.97k (x0.83)
Test#1 (Memory)
19.01k
12.22k (x0.64)
TOTAL
399.39k
529.32k (x1.33)

Performance/W
i5-12400F
i9-9900K
Test#1 (Integers)
1489 points/W
2558 points/W
Test#2 (FP)
1208 points/W
2317 points/W
Test#3 (Generic, ZIP)
554 points/W
568 points/W
Test#1 (Memory)
162 points/W
129 points/W
TOTAL
3414 points/W
5572 points/W

Performance/GHz
i5-12400F
i9-9900K
Test#1 (Integers)
7693 points/GHz
6417 points/GHz
Test#2 (FP)
4621 points/GHz
5634 points/GHz
Test#3 (Generic, ZIP)
2389 points/GHz
1335 points/GHz
Test#1 (Memory)
2675 points/GHz
2996 points/GHz
TOTAL
17378 points/GHz
16382 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4