| | | | | | |

Core i5-12400 vs i7-1280P


Description
Both models i5-12400 and i7-1280P are based on Alder Lake architecture.

Alder Lake is the 12th generation of Intel Core. It uses the 10nm proccess and was the first to introduce a hybrid architecture with Performance cores and Efficiency cores.

Using the multithread performance as a reference, the i5-12400 gets a score of 544.6 k points while the i7-1280P gets 468.3 k points.

Summarizing, the i5-12400 is 1.2 times faster than the i7-1280P. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
90672
906a3
Core
Arder Lake-S
Alder Lake-P
Architecture
Base frecuency
2.5 GHz
1.3 GHz
Boost frecuency
4.4 GHz
4.8 GHz
Socket
LGA 1700
BGA 1744
Cores/Threads
6/12
14/20
TDP
65 W
28 W
Cache L1 (d+i)
6x32+6x48 kB
6x32/8x64+6x48/8x32 kB
Cache L2
6x1280 kB
6x1280+6x2048 kB
Cache L3
18432 kB
24576 kB
Date
January 2022
April 2022
Mean monothread perf.
102.51k points
91.45k points
Mean multithread perf.
544.64k points
468.3k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-12400
i7-1280P
Test#1 (Integers)
7.51k
6.94k (x0.93)
Test#2 (FP)
18.66k
18.46k (x0.99)
Test#3 (Generic, ZIP)
13.32k
11.27k (x0.85)
Test#1 (Memory)
14.8k
13.6k (x0.92)
TOTAL
54.29k
50.27k (x0.93)

Multithread

i5-12400

i7-1280P
Test#1 (Integers)
35.52k
44.01k (x1.24)
Test#2 (FP)
138.43k
125.05k (x0.9)
Test#3 (Generic, ZIP)
85.55k
76.28k (x0.89)
Test#1 (Memory)
21.72k
15.52k (x0.71)
TOTAL
281.22k
260.85k (x0.93)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-12400
i7-1280P
Test#1 (Integers)
24.24k
22.72k (x0.94)
Test#2 (FP)
23.92k
23.88k (x1)
Test#3 (Generic, ZIP)
14.43k
12.75k (x0.88)
Test#1 (Memory)
14.84k
13.71k (x0.92)
TOTAL
77.43k
73.05k (x0.94)

Multithread

i5-12400

i7-1280P
Test#1 (Integers)
124.33k
151.95k (x1.22)
Test#2 (FP)
168.8k
160.95k (x0.95)
Test#3 (Generic, ZIP)
100k
84.9k (x0.85)
Test#1 (Memory)
21.2k
15.91k (x0.75)
TOTAL
414.33k
413.72k (x1)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-12400
i7-1280P
Test#1 (Integers)
23.84k
22.76k (x0.95)
Test#2 (FP)
25.09k
25.2k (x1)
Test#3 (Generic, ZIP)
14.1k
12.64k (x0.9)
Test#1 (Memory)
14.48k
13.33k (x0.92)
TOTAL
77.51k
73.92k (x0.95)

Multithread

i5-12400

i7-1280P
Test#1 (Integers)
123.98k
149.83k (x1.21)
Test#2 (FP)
176.89k
170.43k (x0.96)
Test#3 (Generic, ZIP)
97.42k
83.32k (x0.86)
Test#1 (Memory)
20.78k
15.67k (x0.75)
TOTAL
419.07k
419.25k (x1)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-12400
i7-1280P
Test#1 (Integers)
48.08k
39.78k (x0.83)
Test#2 (FP)
25.6k
26.06k (x1.02)
Test#3 (Generic, ZIP)
14.02k
12.44k (x0.89)
Test#1 (Memory)
14.81k
13.17k (x0.89)
TOTAL
102.51k
91.45k (x0.89)

Multithread

i5-12400

i7-1280P
Test#1 (Integers)
230.14k
209.96k (x0.91)
Test#2 (FP)
198.07k
170.21k (x0.86)
Test#3 (Generic, ZIP)
94.78k
72.04k (x0.76)
Test#1 (Memory)
21.64k
16.09k (x0.74)
TOTAL
544.64k
468.3k (x0.86)

Performance/W
i5-12400
i7-1280P
Test#1 (Integers)
3541 points/W
7499 points/W
Test#2 (FP)
3047 points/W
6079 points/W
Test#3 (Generic, ZIP)
1458 points/W
2573 points/W
Test#1 (Memory)
333 points/W
575 points/W
TOTAL
8379 points/W
16725 points/W

Performance/GHz
i5-12400
i7-1280P
Test#1 (Integers)
10927 points/GHz
8287 points/GHz
Test#2 (FP)
5819 points/GHz
5429 points/GHz
Test#3 (Generic, ZIP)
3186 points/GHz
2592 points/GHz
Test#1 (Memory)
3365 points/GHz
2744 points/GHz
TOTAL
23298 points/GHz
19051 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4