| | | | | | |

Core i3-12100T vs i7-9750H


Description
The i3-12100T is based on Alder Lake architecture while the i7-9750H is based on Coffee Lake.

Using the multithread performance as a reference, the i3-12100T gets a score of 330.6 k points while the i7-9750H gets 276.5 k points.

Summarizing, the i3-12100T is 1.2 times faster than the i7-9750H. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
90675
906ed
Core
Alder Lake-S
Coffee Lake-H
Architecture
Base frecuency
2.2 GHz
2.6 GHz
Boost frecuency
4.1 GHz
4.5 GHz
Socket
LGA 1700
BGA 1440
Cores/Threads
4/8
6/12
TDP
35 W
45 W
Cache L1 (d+i)
4x32+4x48 kB
6x32+6x32 kB
Cache L2
4x1280 kB
6x256 kB
Cache L3
12288 kB
12288 kB
Date
January 2022
April 2019
Mean monothread perf.
93.54k points
62.92k points
Mean multithread perf.
330.62k points
276.46k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i3-12100T
i7-9750H
Test#1 (Integers)
6.88k
4.53k (x0.66)
Test#2 (FP)
17.36k
18.24k (x1.05)
Test#3 (Generic, ZIP)
12.26k
5.76k (x0.47)
Test#1 (Memory)
13.49k
13.01k (x0.96)
TOTAL
49.98k
41.54k (x0.83)

Multithread

i3-12100T

i7-9750H
Test#1 (Integers)
22.03k
24.3k (x1.1)
Test#2 (FP)
84.16k
97.88k (x1.16)
Test#3 (Generic, ZIP)
46.49k
29.85k (x0.64)
Test#1 (Memory)
8.96k
11.93k (x1.33)
TOTAL
161.65k
163.95k (x1.01)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i3-12100T
i7-9750H
Test#1 (Integers)
22.39k
16.32k (x0.73)
Test#2 (FP)
22.29k
23.42k (x1.05)
Test#3 (Generic, ZIP)
13.37k
6.04k (x0.45)
Test#1 (Memory)
13.72k
13.24k (x0.97)
TOTAL
71.76k
59.03k (x0.82)

Multithread

i3-12100T

i7-9750H
Test#1 (Integers)
76.69k
86.92k (x1.13)
Test#2 (FP)
104.06k
126.14k (x1.21)
Test#3 (Generic, ZIP)
53.2k
29.62k (x0.56)
Test#1 (Memory)
8.86k
11.86k (x1.34)
TOTAL
242.81k
254.54k (x1.05)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i3-12100T
i7-9750H
Test#1 (Integers)
22.25k
16.31k (x0.73)
Test#2 (FP)
23.16k
24.48k (x1.06)
Test#3 (Generic, ZIP)
13.09k
5.87k (x0.45)
Test#1 (Memory)
13.21k
13.02k (x0.99)
TOTAL
71.7k
59.67k (x0.83)

Multithread

i3-12100T

i7-9750H
Test#1 (Integers)
77.43k
87.54k (x1.13)
Test#2 (FP)
109.08k
131.05k (x1.2)
Test#3 (Generic, ZIP)
52.45k
28.47k (x0.54)
Test#1 (Memory)
8.75k
11.8k (x1.35)
TOTAL
247.71k
258.87k (x1.05)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i3-12100T
i7-9750H
Test#1 (Integers)
43.24k
25.22k (x0.58)
Test#2 (FP)
23.76k
21.97k (x0.92)
Test#3 (Generic, ZIP)
12.67k
5.02k (x0.4)
Test#1 (Memory)
13.88k
10.71k (x0.77)
TOTAL
93.54k
62.92k (x0.67)

Multithread

i3-12100T

i7-9750H
Test#1 (Integers)
150.28k
125.56k (x0.84)
Test#2 (FP)
126.29k
115.86k (x0.92)
Test#3 (Generic, ZIP)
45.32k
25.63k (x0.57)
Test#1 (Memory)
8.73k
9.4k (x1.08)
TOTAL
330.62k
276.46k (x0.84)

Performance/W
i3-12100T
i7-9750H
Test#1 (Integers)
4294 points/W
2790 points/W
Test#2 (FP)
3608 points/W
2575 points/W
Test#3 (Generic, ZIP)
1295 points/W
570 points/W
Test#1 (Memory)
249 points/W
209 points/W
TOTAL
9446 points/W
6144 points/W

Performance/GHz
i3-12100T
i7-9750H
Test#1 (Integers)
10546 points/GHz
5605 points/GHz
Test#2 (FP)
5794 points/GHz
4882 points/GHz
Test#3 (Generic, ZIP)
3089 points/GHz
1115 points/GHz
Test#1 (Memory)
3384 points/GHz
2380 points/GHz
TOTAL
22814 points/GHz
13982 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4