| | | | | | |

Xeon E5-2660 v2 vs Core i3-6006U


Description
The E5-2660 v2 is based on Ivy Bridge architecture while the i3-6006U is based on Skylake.

Using the multithread performance as a reference, the E5-2660 v2 gets a score of 459.3 k points while the i3-6006U gets 49.9 k points.

Summarizing, the E5-2660 v2 is 9.2 times faster than the i3-6006U. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
306e4
406e3
Core
Ivy Bridge-EP
Skylake-U
Architecture
Base frecuency
2.2 GHz
2 GHz
Boost frecuency
3 GHz
2 GHz
Socket
LGA 2011
BGA1356
Cores/Threads
10 /20
2/4
TDP
95 W
15 W
Cache L1 (d+i)
10x32+10x32 kB
2x32+2x32 kB
Cache L2
10x256 kB
2x256 kB
Cache L3
25600 kB
3072 kB
Date
September 2013
November 2016
Mean monothread perf.
19.48k points
31.3k points
Mean multithread perf.
459.31k points
68.38k points

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
E5-2660 v2
i3-6006U
Test#1 (Integers)
7.26k
7.34k (x1.01)
Test#2 (FP)
6.9k
11.37k (x1.65)
Test#3 (Generic, ZIP)
2.77k
2.74k (x0.99)
Test#1 (Memory)
2.55k
3.08k (x1.21)
TOTAL
19.48k
24.53k (x1.26)

Multithread

E5-2660 v2

i3-6006U
Test#1 (Integers)
180.2k
15.32k (x0.09)
Test#2 (FP)
191.43k
25.61k (x0.13)
Test#3 (Generic, ZIP)
80.22k
6.36k (x0.08)
Test#1 (Memory)
7.46k
2.58k (x0.35)
TOTAL
459.31k
49.87k (x0.11)

Performance/W
E5-2660 v2
i3-6006U
Test#1 (Integers)
1897 points/W
1022 points/W
Test#2 (FP)
2015 points/W
1707 points/W
Test#3 (Generic, ZIP)
844 points/W
424 points/W
Test#1 (Memory)
79 points/W
172 points/W
TOTAL
4835 points/W
3325 points/W

Performance/GHz
E5-2660 v2
i3-6006U
Test#1 (Integers)
2420 points/GHz
3670 points/GHz
Test#2 (FP)
2302 points/GHz
5683 points/GHz
Test#3 (Generic, ZIP)
923 points/GHz
1372 points/GHz
Test#1 (Memory)
851 points/GHz
1540 points/GHz
TOTAL
6495 points/GHz
12265 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4