| | | | | | |

Core i7-9750H vs i7-7700HQ


Description
The i7-9750H is based on Coffee Lake architecture while the i7-7700HQ is based on Kaby Lake.

Using the multithread performance as a reference, the i7-9750H gets a score of 276.5 k points while the i7-7700HQ gets 208.3 k points.

Summarizing, the i7-9750H is 1.3 times faster than the i7-7700HQ. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
906ed
906e9
Core
Coffee Lake-H
Kaby Lake-H
Architecture
Base frecuency
2.6 GHz
2.8 GHz
Boost frecuency
4.5 GHz
3.8 GHz
Socket
BGA 1440
BGA1440
Cores/Threads
6/12
4/8
TDP
45 W
45 W
Cache L1 (d+i)
6x32+6x32 kB
4x32+4x32 kB
Cache L2
6x256 kB
4x256 kB
Cache L3
12288 kB
6144 kB
Date
April 2019
January 2017
Mean monothread perf.
62.92k points
56.29k points
Mean multithread perf.
276.46k points
208.33k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i7-9750H
i7-7700HQ
Test#1 (Integers)
4.53k
3.82k (x0.84)
Test#2 (FP)
18.24k
15.49k (x0.85)
Test#3 (Generic, ZIP)
5.76k
4.96k (x0.86)
Test#1 (Memory)
13.01k
8.82k (x0.68)
TOTAL
41.54k
33.09k (x0.8)

Multithread

i7-9750H

i7-7700HQ
Test#1 (Integers)
24.3k
14.15k (x0.58)
Test#2 (FP)
97.88k
65.81k (x0.67)
Test#3 (Generic, ZIP)
29.85k
22.41k (x0.75)
Test#1 (Memory)
11.93k
5.21k (x0.44)
TOTAL
163.95k
107.57k (x0.66)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i7-9750H
i7-7700HQ
Test#1 (Integers)
16.32k
13.75k (x0.84)
Test#2 (FP)
23.42k
19.69k (x0.84)
Test#3 (Generic, ZIP)
6.04k
5.19k (x0.86)
Test#1 (Memory)
13.24k
8.92k (x0.67)
TOTAL
59.03k
47.55k (x0.81)

Multithread

i7-9750H

i7-7700HQ
Test#1 (Integers)
86.92k
52.55k (x0.6)
Test#2 (FP)
126.14k
86.47k (x0.69)
Test#3 (Generic, ZIP)
29.62k
23.02k (x0.78)
Test#1 (Memory)
11.86k
5.4k (x0.46)
TOTAL
254.54k
167.43k (x0.66)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i7-9750H
i7-7700HQ
Test#1 (Integers)
16.31k
13k (x0.8)
Test#2 (FP)
24.48k
20.34k (x0.83)
Test#3 (Generic, ZIP)
5.87k
4.77k (x0.81)
Test#1 (Memory)
13.02k
6.95k (x0.53)
TOTAL
59.67k
45.05k (x0.76)

Multithread

i7-9750H

i7-7700HQ
Test#1 (Integers)
87.54k
52.7k (x0.6)
Test#2 (FP)
131.05k
89.69k (x0.68)
Test#3 (Generic, ZIP)
28.47k
22.49k (x0.79)
Test#1 (Memory)
11.8k
4.3k (x0.36)
TOTAL
258.87k
169.17k (x0.65)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i7-9750H
i7-7700HQ
Test#1 (Integers)
25.22k
23.27k (x0.92)
Test#2 (FP)
21.97k
20.35k (x0.93)
Test#3 (Generic, ZIP)
5.02k
4.76k (x0.95)
Test#1 (Memory)
10.71k
7.92k (x0.74)
TOTAL
62.92k
56.29k (x0.89)

Multithread

i7-9750H

i7-7700HQ
Test#1 (Integers)
125.56k
93.11k (x0.74)
Test#2 (FP)
115.86k
89.03k (x0.77)
Test#3 (Generic, ZIP)
25.63k
21.29k (x0.83)
Test#1 (Memory)
9.4k
4.9k (x0.52)
TOTAL
276.46k
208.33k (x0.75)

Performance/W
i7-9750H
i7-7700HQ
Test#1 (Integers)
2790 points/W
2069 points/W
Test#2 (FP)
2575 points/W
1978 points/W
Test#3 (Generic, ZIP)
570 points/W
473 points/W
Test#1 (Memory)
209 points/W
109 points/W
TOTAL
6144 points/W
4629 points/W

Performance/GHz
i7-9750H
i7-7700HQ
Test#1 (Integers)
5605 points/GHz
6124 points/GHz
Test#2 (FP)
4882 points/GHz
5354 points/GHz
Test#3 (Generic, ZIP)
1115 points/GHz
1251 points/GHz
Test#1 (Memory)
2380 points/GHz
2083 points/GHz
TOTAL
13982 points/GHz
14813 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4