| | | | | | |

Core i7-7560U vs i7-6700HQ


Description
The i7-7560U is based on Kaby Lake architecture while the i7-6700HQ is based on Skylake.

Using the multithread performance as a reference, the i7-7560U gets a score of 97.3 k points while the i7-6700HQ gets 205.2 k points.

Summarizing, the i7-6700HQ is 2.1 times faster than the i7-7560U. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
806e9
506e3
Core
Kaby Lake-U
Skylake-H
Architecture
Base frecuency
2.4 GHz
2.6 GHz
Boost frecuency
3.8 GHz
3.5 GHz
Socket
BGA 1356
BGA1440
Cores/Threads
2/4
4/8
TDP
15 W
45 W
Cache L1 (d+i)
2x32+2x32 kB
4x32+4x32 kB
Cache L2
2x256 kB
4x256 kB
Cache L3
4096 kB
6144 kB
Date
January 2017
Mean monothread perf.
48.16k points
50.54k points
Mean multithread perf.
97.27k points
205.24k points

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i7-7560U
i7-6700HQ
Test#1 (Integers)
12.88k
11.23k (x0.87)
Test#2 (FP)
20.02k
16.98k (x0.85)
Test#3 (Generic, ZIP)
4.15k
4.21k (x1.01)
Test#1 (Memory)
8.97k
7.07k (x0.79)
TOTAL
46.02k
39.49k (x0.86)

Multithread

i7-7560U

i7-6700HQ
Test#1 (Integers)
23k
44.59k (x1.94)
Test#2 (FP)
41.21k
75.02k (x1.82)
Test#3 (Generic, ZIP)
9.92k
20.15k (x2.03)
Test#1 (Memory)
14.9k
5.92k (x0.4)
TOTAL
89.03k
145.68k (x1.64)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i7-7560U
i7-6700HQ
Test#1 (Integers)
19.37k
21.33k (x1.1)
Test#2 (FP)
17.26k
18.34k (x1.06)
Test#3 (Generic, ZIP)
3.78k
4.44k (x1.17)
Test#1 (Memory)
7.75k
6.44k (x0.83)
TOTAL
48.16k
50.54k (x1.05)

Multithread

i7-7560U

i7-6700HQ
Test#1 (Integers)
39.17k
91.89k (x2.35)
Test#2 (FP)
38.24k
87.87k (x2.3)
Test#3 (Generic, ZIP)
8.9k
20.61k (x2.32)
Test#1 (Memory)
10.97k
4.87k (x0.44)
TOTAL
97.27k
205.24k (x2.11)

Performance/W
i7-7560U
i7-6700HQ
Test#1 (Integers)
2611 points/W
2042 points/W
Test#2 (FP)
2549 points/W
1953 points/W
Test#3 (Generic, ZIP)
593 points/W
458 points/W
Test#1 (Memory)
731 points/W
108 points/W
TOTAL
6485 points/W
4561 points/W

Performance/GHz
i7-7560U
i7-6700HQ
Test#1 (Integers)
5097 points/GHz
6094 points/GHz
Test#2 (FP)
4543 points/GHz
5240 points/GHz
Test#3 (Generic, ZIP)
994 points/GHz
1267 points/GHz
Test#1 (Memory)
2041 points/GHz
1840 points/GHz
TOTAL
12674 points/GHz
14441 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4