| | | | | | |

Core i7-5500U vs i7-7700HQ


Description
The i7-5500U is based on Broadwell architecture while the i7-7700HQ is based on Kaby Lake.

Using the multithread performance as a reference, the i7-5500U gets a score of 82.9 k points while the i7-7700HQ gets 208.3 k points.

Summarizing, the i7-7700HQ is 2.5 times faster than the i7-5500U . To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
306d4
906e9
Core
Broadwell-U
Kaby Lake-H
Architecture
Base frecuency
2.4 GHz
2.8 GHz
Boost frecuency
3 GHz
3.8 GHz
Socket
BGA 1168
BGA1440
Cores/Threads
2 /4
4/8
TDP
15 W
45 W
Cache L1 (d+i)
2x32+2x32 kB
4x32+4x32 kB
Cache L2
256 kB
4x256 kB
Cache L3
4096 kB
6144 kB
Date
March 2015
January 2017
Mean monothread perf.
40.41k points
56.29k points
Mean multithread perf.
82.89k points
208.33k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i7-5500U
i7-7700HQ
Test#1 (Integers)
3.31k
3.82k (x1.15)
Test#2 (FP)
11.61k
15.49k (x1.33)
Test#3 (Generic, ZIP)
3.94k
4.96k (x1.26)
Test#1 (Memory)
3.24k
8.82k (x2.72)
TOTAL
22.1k
33.09k (x1.5)

Multithread

i7-5500U

i7-7700HQ
Test#1 (Integers)
5.97k
14.15k (x2.37)
Test#2 (FP)
25.54k
65.81k (x2.58)
Test#3 (Generic, ZIP)
8.8k
22.41k (x2.54)
Test#1 (Memory)
3.36k
5.21k (x1.55)
TOTAL
43.67k
107.57k (x2.46)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i7-5500U
i7-7700HQ
Test#1 (Integers)
10.59k
13.75k (x1.3)
Test#2 (FP)
13.72k
19.69k (x1.44)
Test#3 (Generic, ZIP)
4.22k
5.19k (x1.23)
Test#1 (Memory)
3.64k
8.92k (x2.45)
TOTAL
32.16k
47.55k (x1.48)

Multithread

i7-5500U

i7-7700HQ
Test#1 (Integers)
20.8k
52.55k (x2.53)
Test#2 (FP)
30.44k
86.47k (x2.84)
Test#3 (Generic, ZIP)
9.1k
23.02k (x2.53)
Test#1 (Memory)
3.35k
5.4k (x1.61)
TOTAL
63.69k
167.43k (x2.63)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i7-5500U
i7-7700HQ
Test#1 (Integers)
10.37k
13k (x1.25)
Test#2 (FP)
14.25k
20.34k (x1.43)
Test#3 (Generic, ZIP)
4.07k
4.77k (x1.17)
Test#1 (Memory)
3.12k
6.95k (x2.23)
TOTAL
31.81k
45.05k (x1.42)

Multithread

i7-5500U

i7-7700HQ
Test#1 (Integers)
20.93k
52.7k (x2.52)
Test#2 (FP)
33.87k
89.69k (x2.65)
Test#3 (Generic, ZIP)
8.98k
22.49k (x2.5)
Test#1 (Memory)
3.35k
4.3k (x1.28)
TOTAL
67.13k
169.17k (x2.52)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i7-5500U
i7-7700HQ
Test#1 (Integers)
17.76k
23.27k (x1.31)
Test#2 (FP)
14.9k
20.35k (x1.37)
Test#3 (Generic, ZIP)
4.17k
4.76k (x1.14)
Test#1 (Memory)
3.58k
7.92k (x2.21)
TOTAL
40.41k
56.29k (x1.39)

Multithread

i7-5500U

i7-7700HQ
Test#1 (Integers)
34.9k
93.11k (x2.67)
Test#2 (FP)
35.07k
89.03k (x2.54)
Test#3 (Generic, ZIP)
9.28k
21.29k (x2.29)
Test#1 (Memory)
3.64k
4.9k (x1.34)
TOTAL
82.89k
208.33k (x2.51)

Performance/W
i7-5500U
i7-7700HQ
Test#1 (Integers)
2327 points/W
2069 points/W
Test#2 (FP)
2338 points/W
1978 points/W
Test#3 (Generic, ZIP)
619 points/W
473 points/W
Test#1 (Memory)
243 points/W
109 points/W
TOTAL
5526 points/W
4629 points/W

Performance/GHz
i7-5500U
i7-7700HQ
Test#1 (Integers)
5920 points/GHz
6124 points/GHz
Test#2 (FP)
4966 points/GHz
5354 points/GHz
Test#3 (Generic, ZIP)
1390 points/GHz
1251 points/GHz
Test#1 (Memory)
1193 points/GHz
2083 points/GHz
TOTAL
13469 points/GHz
14813 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4