| | | | | | |

Core i5-6400 vs Xeon E5-2620 v4


Description
The i5-6400 is based on Skylake architecture while the E5-2620 v4 is based on Broadwell.

Using the multithread performance as a reference, the i5-6400 gets a score of 174.1 k points while the E5-2620 v4 gets 237.8 k points.

Summarizing, the E5-2620 v4 is 1.4 times faster than the i5-6400 . To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
506e3
406f1
Core
Skylake-S
Broadwell-EP
Architecture
Base frecuency
2.7 GHz
2.1 GHz
Boost frecuency
3.3 GHz
3 GHz
Socket
LGA 1151
Socket 2011-3
Cores/Threads
4/4
8/16
TDP
65 W
85 W
Cache L1 (d+i)
4x32+4x32 kB
8x32+8x32 kB
Cache L2
4x256 kB
8x256 kB
Cache L3
6144 kB
20480 kB
Date
September 2015
March 2016
Mean monothread perf.
48.05k points
29.39k points
Mean multithread perf.
174.05k points
237.83k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-6400
E5-2620 v4
Test#1 (Integers)
3.2k
2.6k (x0.81)
Test#2 (FP)
12.81k
7.55k (x0.59)
Test#3 (Generic, ZIP)
4.18k
2.61k (x0.62)
Test#1 (Memory)
4.3k
2.03k (x0.47)
TOTAL
24.49k
14.79k (x0.6)

Multithread

i5-6400

E5-2620 v4
Test#1 (Integers)
11.45k
17.41k (x1.52)
Test#2 (FP)
46.67k
75.46k (x1.62)
Test#3 (Generic, ZIP)
14.69k
26.25k (x1.79)
Test#1 (Memory)
5.92k
4.65k (x0.79)
TOTAL
78.73k
123.78k (x1.57)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-6400
E5-2620 v4
Test#1 (Integers)
11.56k
8.22k (x0.71)
Test#2 (FP)
16.53k
12.06k (x0.73)
Test#3 (Generic, ZIP)
4.3k
4.01k (x0.93)
Test#1 (Memory)
3.97k
2.89k (x0.73)
TOTAL
36.36k
27.18k (x0.75)

Multithread

i5-6400

E5-2620 v4
Test#1 (Integers)
43.01k
61.34k (x1.43)
Test#2 (FP)
64.46k
90.21k (x1.4)
Test#3 (Generic, ZIP)
16.14k
26.2k (x1.62)
Test#1 (Memory)
5.91k
4.62k (x0.78)
TOTAL
129.51k
182.37k (x1.41)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-6400
E5-2620 v4
Test#1 (Integers)
11.82k
6.04k (x0.51)
Test#2 (FP)
18.36k
10.18k (x0.55)
Test#3 (Generic, ZIP)
4.43k
2.74k (x0.62)
Test#1 (Memory)
4.95k
2.41k (x0.49)
TOTAL
39.56k
21.37k (x0.54)

Multithread

i5-6400

E5-2620 v4
Test#1 (Integers)
46.04k
47.51k (x1.03)
Test#2 (FP)
69.47k
75.12k (x1.08)
Test#3 (Generic, ZIP)
16.33k
19.72k (x1.21)
Test#1 (Memory)
7.74k
5.45k (x0.7)
TOTAL
139.58k
147.8k (x1.06)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-6400
E5-2620 v4
Test#1 (Integers)
21.1k
12.16k (x0.58)
Test#2 (FP)
18.28k
11.82k (x0.65)
Test#3 (Generic, ZIP)
4.22k
3.02k (x0.71)
Test#1 (Memory)
4.45k
2.4k (x0.54)
TOTAL
48.05k
29.39k (x0.61)

Multithread

i5-6400

E5-2620 v4
Test#1 (Integers)
80.03k
103.77k (x1.3)
Test#2 (FP)
71.1k
102.28k (x1.44)
Test#3 (Generic, ZIP)
16.19k
26.13k (x1.61)
Test#1 (Memory)
6.73k
5.65k (x0.84)
TOTAL
174.05k
237.83k (x1.37)

Performance/W
i5-6400
E5-2620 v4
Test#1 (Integers)
1231 points/W
1221 points/W
Test#2 (FP)
1094 points/W
1203 points/W
Test#3 (Generic, ZIP)
249 points/W
307 points/W
Test#1 (Memory)
104 points/W
66 points/W
TOTAL
2678 points/W
2798 points/W

Performance/GHz
i5-6400
E5-2620 v4
Test#1 (Integers)
6394 points/GHz
4054 points/GHz
Test#2 (FP)
5539 points/GHz
3939 points/GHz
Test#3 (Generic, ZIP)
1279 points/GHz
1005 points/GHz
Test#1 (Memory)
1348 points/GHz
799 points/GHz
TOTAL
14560 points/GHz
9798 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4