| | | | | | |

Core i5-5675R vs i7-7700HQ


Description
The i5-5675R is based on Broadwell architecture while the i7-7700HQ is based on Kaby Lake.

Using the multithread performance as a reference, the i5-5675R gets a score of 194.2 k points while the i7-7700HQ gets 208.3 k points.

Summarizing, the i7-7700HQ is 1.1 times faster than the i5-5675R. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
40671
906e9
Core
Bradwell-H
Kaby Lake-H
Architecture
Base frecuency
3.1 GHz
2.8 GHz
Boost frecuency
3.6 GHz
3.8 GHz
Socket
BGA1364
BGA1440
Cores/Threads
4/4
4/8
TDP
65 W
45 W
Cache L1 (d+i)
4x32+4x32 kB
4x32+4x32 kB
Cache L2
4x256 kB
4x256 kB
Cache L3
4096 kB
6144 kB
Date
June 2015
January 2017
Mean monothread perf.
51.43k points
56.29k points
Mean multithread perf.
194.2k points
208.33k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-5675R
i7-7700HQ
Test#1 (Integers)
4.14k
3.82k (x0.92)
Test#2 (FP)
14.35k
15.49k (x1.08)
Test#3 (Generic, ZIP)
4.94k
4.96k (x1)
Test#1 (Memory)
5.47k
8.82k (x1.61)
TOTAL
28.91k
33.09k (x1.14)

Multithread

i5-5675R

i7-7700HQ
Test#1 (Integers)
16.02k
14.15k (x0.88)
Test#2 (FP)
54.6k
65.81k (x1.21)
Test#3 (Generic, ZIP)
18.69k
22.41k (x1.2)
Test#1 (Memory)
16.87k
5.21k (x0.31)
TOTAL
106.18k
107.57k (x1.01)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-5675R
i7-7700HQ
Test#1 (Integers)
12.86k
13.75k (x1.07)
Test#2 (FP)
16.85k
19.69k (x1.17)
Test#3 (Generic, ZIP)
5.19k
5.19k (x1)
Test#1 (Memory)
5.49k
8.92k (x1.62)
TOTAL
40.39k
47.55k (x1.18)

Multithread

i5-5675R

i7-7700HQ
Test#1 (Integers)
50.07k
52.55k (x1.05)
Test#2 (FP)
64.61k
86.47k (x1.34)
Test#3 (Generic, ZIP)
19.84k
23.02k (x1.16)
Test#1 (Memory)
17.09k
5.4k (x0.32)
TOTAL
151.6k
167.43k (x1.1)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-5675R
i7-7700HQ
Test#1 (Integers)
12.88k
13k (x1.01)
Test#2 (FP)
18.27k
20.34k (x1.11)
Test#3 (Generic, ZIP)
5.12k
4.77k (x0.93)
Test#1 (Memory)
5.45k
6.95k (x1.28)
TOTAL
41.72k
45.05k (x1.08)

Multithread

i5-5675R

i7-7700HQ
Test#1 (Integers)
49.91k
52.7k (x1.06)
Test#2 (FP)
70.3k
89.69k (x1.28)
Test#3 (Generic, ZIP)
19.69k
22.49k (x1.14)
Test#1 (Memory)
16.92k
4.3k (x0.25)
TOTAL
156.83k
169.17k (x1.08)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-5675R
i7-7700HQ
Test#1 (Integers)
21.91k
23.27k (x1.06)
Test#2 (FP)
18.59k
20.35k (x1.09)
Test#3 (Generic, ZIP)
5.2k
4.76k (x0.91)
Test#1 (Memory)
5.72k
7.92k (x1.38)
TOTAL
51.43k
56.29k (x1.09)

Multithread

i5-5675R

i7-7700HQ
Test#1 (Integers)
84.92k
93.11k (x1.1)
Test#2 (FP)
72.09k
89.03k (x1.23)
Test#3 (Generic, ZIP)
20.13k
21.29k (x1.06)
Test#1 (Memory)
17.07k
4.9k (x0.29)
TOTAL
194.2k
208.33k (x1.07)

Performance/W
i5-5675R
i7-7700HQ
Test#1 (Integers)
1306 points/W
2069 points/W
Test#2 (FP)
1109 points/W
1978 points/W
Test#3 (Generic, ZIP)
310 points/W
473 points/W
Test#1 (Memory)
263 points/W
109 points/W
TOTAL
2988 points/W
4629 points/W

Performance/GHz
i5-5675R
i7-7700HQ
Test#1 (Integers)
6087 points/GHz
6124 points/GHz
Test#2 (FP)
5164 points/GHz
5354 points/GHz
Test#3 (Generic, ZIP)
1445 points/GHz
1251 points/GHz
Test#1 (Memory)
1590 points/GHz
2083 points/GHz
TOTAL
14286 points/GHz
14813 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4