| | | | | | |

Core i5-10500T vs Ryzen 7 2700X


Description
The i5-10500T is based on Comet Lake architecture while the 2700X is based on Zen+.

Using the multithread performance as a reference, the i5-10500T gets a score of 302.1 k points while the 2700X gets 431.1 k points.

Summarizing, the 2700X is 1.4 times faster than the i5-10500T. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
a0653
800f82
Core
Comet Lake-S
Pinnacle Ridge
Architecture
Base frecuency
2.3 GHz
3.7 GHz
Boost frecuency
3.8 GHz
4.3 GHz
Socket
LGA 1200
AM4
Cores/Threads
6/12
8/16
TDP
35 W
105 W
Cache L1 (d+i)
6x32+6x32 kB
8x64+8x32 kB
Cache L2
6x256 kB
8x512 kB
Cache L3
12288 kB
16384 kB
Date
April 2020
April 2018
Mean monothread perf.
64.6k points
64.83k points
Mean multithread perf.
302.13k points
431.14k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-10500T
2700X
Test#1 (Integers)
3.87k
4.25k (x1.1)
Test#2 (FP)
15.79k
19.72k (x1.25)
Test#3 (Generic, ZIP)
5.1k
5.84k (x1.15)
Test#1 (Memory)
12.13k
21.36k (x1.76)
TOTAL
36.89k
51.17k (x1.39)

Multithread

i5-10500T

2700X
Test#1 (Integers)
22.17k
35.04k (x1.58)
Test#2 (FP)
101.79k
181.42k (x1.78)
Test#3 (Generic, ZIP)
34.13k
64.86k (x1.9)
Test#1 (Memory)
3.74k
8.21k (x2.2)
TOTAL
161.83k
289.54k (x1.79)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-10500T
2700X
Test#1 (Integers)
13.94k
15.22k (x1.09)
Test#2 (FP)
20.01k
24.12k (x1.21)
Test#3 (Generic, ZIP)
5.34k
5.87k (x1.1)
Test#1 (Memory)
11.41k
21k (x1.84)
TOTAL
50.7k
66.21k (x1.31)

Multithread

i5-10500T

2700X
Test#1 (Integers)
82.18k
126.81k (x1.54)
Test#2 (FP)
124.23k
229.86k (x1.85)
Test#3 (Generic, ZIP)
35.6k
61.74k (x1.73)
Test#1 (Memory)
3.73k
9.77k (x2.62)
TOTAL
245.75k
428.19k (x1.74)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-10500T
2700X
Test#1 (Integers)
14.01k
14.44k (x1.03)
Test#2 (FP)
21.17k
24.92k (x1.18)
Test#3 (Generic, ZIP)
5.21k
5.8k (x1.11)
Test#1 (Memory)
11.42k
19.07k (x1.67)
TOTAL
51.82k
64.24k (x1.24)

Multithread

i5-10500T

2700X
Test#1 (Integers)
82.38k
122.01k (x1.48)
Test#2 (FP)
115.64k
220.34k (x1.91)
Test#3 (Generic, ZIP)
32.22k
59.89k (x1.86)
Test#1 (Memory)
3.71k
9.9k (x2.67)
TOTAL
233.94k
412.13k (x1.76)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-10500T
2700X
Test#1 (Integers)
25.16k
15.34k (x0.61)
Test#2 (FP)
22.28k
25.75k (x1.16)
Test#3 (Generic, ZIP)
5.18k
5.79k (x1.12)
Test#1 (Memory)
11.97k
17.95k (x1.5)
TOTAL
64.6k
64.83k (x1)

Multithread

i5-10500T

2700X
Test#1 (Integers)
144.86k
123.07k (x0.85)
Test#2 (FP)
120.98k
239.3k (x1.98)
Test#3 (Generic, ZIP)
32.55k
60.6k (x1.86)
Test#1 (Memory)
3.73k
8.18k (x2.19)
TOTAL
302.13k
431.14k (x1.43)

Performance/W
i5-10500T
2700X
Test#1 (Integers)
4139 points/W
1172 points/W
Test#2 (FP)
3457 points/W
2279 points/W
Test#3 (Generic, ZIP)
930 points/W
577 points/W
Test#1 (Memory)
107 points/W
78 points/W
TOTAL
8632 points/W
4106 points/W

Performance/GHz
i5-10500T
2700X
Test#1 (Integers)
6621 points/GHz
3568 points/GHz
Test#2 (FP)
5863 points/GHz
5987 points/GHz
Test#3 (Generic, ZIP)
1364 points/GHz
1347 points/GHz
Test#1 (Memory)
3151 points/GHz
4175 points/GHz
TOTAL
16999 points/GHz
15078 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4