| | | | | | |

Core i5-10500H vs i7-6820HQ


Description
The i5-10500H is based on Comet Lake architecture while the i7-6820HQ is based on Skylake.

Using the multithread performance as a reference, the i5-10500H gets a score of 379 k points while the i7-6820HQ gets 205.9 k points.

Summarizing, the i5-10500H is 1.8 times faster than the i7-6820HQ. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
a0652
506e3
Core
Comet Lake-S
Skylake-H
Architecture
Base frecuency
3.1 GHz
2.7 GHz
Boost frecuency
4.5 GHz
3.6 GHz
Socket
LGA 1200
BGA1440
Cores/Threads
6/12
4/8
TDP
65 W
45 W
Cache L1 (d+i)
6x32+6x32 kB
4x32+4x32 kB
Cache L2
6x256 kB
4x256 kB
Cache L3
12288 kB
8192 kB
Date
April 2020
October 2015
Mean monothread perf.
72.1k points
50.1k points
Mean multithread perf.
378.99k points
205.89k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-10500H
i7-6820HQ
Test#1 (Integers)
4.98k
3.18k (x0.64)
Test#2 (FP)
17.92k
13.02k (x0.73)
Test#3 (Generic, ZIP)
5.81k
4.17k (x0.72)
Test#1 (Memory)
12.55k
6.93k (x0.55)
TOTAL
41.26k
27.3k (x0.66)

Multithread

i5-10500H

i7-6820HQ
Test#1 (Integers)
29.53k
13.26k (x0.45)
Test#2 (FP)
118.16k
62.23k (x0.53)
Test#3 (Generic, ZIP)
38.43k
20.34k (x0.53)
Test#1 (Memory)
5.29k
5.46k (x1.03)
TOTAL
191.41k
101.29k (x0.53)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-10500H
i7-6820HQ
Test#1 (Integers)
15.89k
11.54k (x0.73)
Test#2 (FP)
22.74k
16.69k (x0.73)
Test#3 (Generic, ZIP)
6.09k
4.51k (x0.74)
Test#1 (Memory)
12.49k
7.27k (x0.58)
TOTAL
57.21k
40.01k (x0.7)

Multithread

i5-10500H

i7-6820HQ
Test#1 (Integers)
96.8k
48.5k (x0.5)
Test#2 (FP)
149.1k
77.02k (x0.52)
Test#3 (Generic, ZIP)
39.68k
21.3k (x0.54)
Test#1 (Memory)
5.28k
5.24k (x0.99)
TOTAL
290.85k
152.06k (x0.52)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-10500H
i7-6820HQ
Test#1 (Integers)
15.86k
11.78k (x0.74)
Test#2 (FP)
24.07k
18.06k (x0.75)
Test#3 (Generic, ZIP)
5.94k
4.48k (x0.75)
Test#1 (Memory)
11.82k
7.12k (x0.6)
TOTAL
57.69k
41.44k (x0.72)

Multithread

i5-10500H

i7-6820HQ
Test#1 (Integers)
97.37k
49.46k (x0.51)
Test#2 (FP)
154.42k
84.8k (x0.55)
Test#3 (Generic, ZIP)
38.76k
20.7k (x0.53)
Test#1 (Memory)
5.4k
4.77k (x0.88)
TOTAL
295.96k
159.73k (x0.54)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-10500H
i7-6820HQ
Test#1 (Integers)
27.93k
20.99k (x0.75)
Test#2 (FP)
25.41k
18.63k (x0.73)
Test#3 (Generic, ZIP)
5.91k
4.33k (x0.73)
Test#1 (Memory)
12.85k
6.15k (x0.48)
TOTAL
72.1k
50.1k (x0.69)

Multithread

i5-10500H

i7-6820HQ
Test#1 (Integers)
176.41k
91.8k (x0.52)
Test#2 (FP)
158.8k
87.24k (x0.55)
Test#3 (Generic, ZIP)
38.53k
20.55k (x0.53)
Test#1 (Memory)
5.25k
6.3k (x1.2)
TOTAL
378.99k
205.89k (x0.54)

Performance/W
i5-10500H
i7-6820HQ
Test#1 (Integers)
2714 points/W
2040 points/W
Test#2 (FP)
2443 points/W
1939 points/W
Test#3 (Generic, ZIP)
593 points/W
457 points/W
Test#1 (Memory)
81 points/W
140 points/W
TOTAL
5831 points/W
4575 points/W

Performance/GHz
i5-10500H
i7-6820HQ
Test#1 (Integers)
6207 points/GHz
5831 points/GHz
Test#2 (FP)
5647 points/GHz
5174 points/GHz
Test#3 (Generic, ZIP)
1313 points/GHz
1204 points/GHz
Test#1 (Memory)
2856 points/GHz
1708 points/GHz
TOTAL
16023 points/GHz
13917 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4