| | | | | | |

Core i5-1035G1 vs i7-7700HQ


Description
The i5-1035G1 is based on Ice Lake architecture while the i7-7700HQ is based on Kaby Lake.

Using the multithread performance as a reference, the i5-1035G1 gets a score of 171.6 k points while the i7-7700HQ gets 208.3 k points.

Summarizing, the i7-7700HQ is 1.2 times faster than the i5-1035G1. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
706e5
906e9
Core
Ice Lake-U
Kaby Lake-H
Architecture
Base frecuency
1 GHz
2.8 GHz
Boost frecuency
3.6 GHz
3.8 GHz
Socket
BGA 1526
BGA1440
Cores/Threads
4/8
4/8
TDP
15 W
45 W
Cache L1 (d+i)
4x32+4x48 kB
4x32+4x32 kB
Cache L2
4x512 kB
4x256 kB
Cache L3
6144 kB
6144 kB
Date
August 2019
January 2017
Mean monothread perf.
55.37k points
56.29k points
Mean multithread perf.
171.65k points
208.33k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-1035G1
i7-7700HQ
Test#1 (Integers)
3.88k
3.82k (x0.99)
Test#2 (FP)
14.98k
15.49k (x1.03)
Test#3 (Generic, ZIP)
9.7k
4.96k (x0.51)
Test#1 (Memory)
8.6k
8.82k (x1.03)
TOTAL
37.15k
33.09k (x0.89)

Multithread

i5-1035G1

i7-7700HQ
Test#1 (Integers)
14.61k
14.15k (x0.97)
Test#2 (FP)
54.9k
65.81k (x1.2)
Test#3 (Generic, ZIP)
27.58k
22.41k (x0.81)
Test#1 (Memory)
5.04k
5.21k (x1.03)
TOTAL
102.13k
107.57k (x1.05)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i5-1035G1
i7-7700HQ
Test#1 (Integers)
12.89k
13.75k (x1.07)
Test#2 (FP)
18.55k
19.69k (x1.06)
Test#3 (Generic, ZIP)
9.93k
5.19k (x0.52)
Test#1 (Memory)
9.54k
8.92k (x0.93)
TOTAL
50.91k
47.55k (x0.93)

Multithread

i5-1035G1

i7-7700HQ
Test#1 (Integers)
50.06k
52.55k (x1.05)
Test#2 (FP)
66.1k
86.47k (x1.31)
Test#3 (Generic, ZIP)
20.24k
23.02k (x1.14)
Test#1 (Memory)
5.51k
5.4k (x0.98)
TOTAL
141.91k
167.43k (x1.18)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i5-1035G1
i7-7700HQ
Test#1 (Integers)
13.58k
13k (x0.96)
Test#2 (FP)
19.53k
20.34k (x1.04)
Test#3 (Generic, ZIP)
9.37k
4.77k (x0.51)
Test#1 (Memory)
9.23k
6.95k (x0.75)
TOTAL
51.7k
45.05k (x0.87)

Multithread

i5-1035G1

i7-7700HQ
Test#1 (Integers)
56.25k
52.7k (x0.94)
Test#2 (FP)
73.73k
89.69k (x1.22)
Test#3 (Generic, ZIP)
29.56k
22.49k (x0.76)
Test#1 (Memory)
5.39k
4.3k (x0.8)
TOTAL
164.94k
169.17k (x1.03)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-1035G1
i7-7700HQ
Test#1 (Integers)
21.5k
23.27k (x1.08)
Test#2 (FP)
17.71k
20.35k (x1.15)
Test#3 (Generic, ZIP)
7.92k
4.76k (x0.6)
Test#1 (Memory)
8.24k
7.92k (x0.96)
TOTAL
55.37k
56.29k (x1.02)

Multithread

i5-1035G1

i7-7700HQ
Test#1 (Integers)
73.03k
93.11k (x1.27)
Test#2 (FP)
68.19k
89.03k (x1.31)
Test#3 (Generic, ZIP)
24.89k
21.29k (x0.86)
Test#1 (Memory)
5.54k
4.9k (x0.89)
TOTAL
171.65k
208.33k (x1.21)

Performance/W
i5-1035G1
i7-7700HQ
Test#1 (Integers)
4869 points/W
2069 points/W
Test#2 (FP)
4546 points/W
1978 points/W
Test#3 (Generic, ZIP)
1660 points/W
473 points/W
Test#1 (Memory)
369 points/W
109 points/W
TOTAL
11443 points/W
4629 points/W

Performance/GHz
i5-1035G1
i7-7700HQ
Test#1 (Integers)
5972 points/GHz
6124 points/GHz
Test#2 (FP)
4919 points/GHz
5354 points/GHz
Test#3 (Generic, ZIP)
2201 points/GHz
1251 points/GHz
Test#1 (Memory)
2290 points/GHz
2083 points/GHz
TOTAL
15381 points/GHz
14813 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4