| | | | | | |

Core i5-1035G1 vs i5-8400


Description
The i5-1035G1 is based on Ice Lake architecture while the i5-8400 is based on Coffee Lake.

Using the multithread performance as a reference, the i5-1035G1 gets a score of 171.6 k points while the i5-8400 gets 289.6 k points.

Summarizing, the i5-8400 is 1.7 times faster than the i5-1035G1. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
706e5
906ea
Core
Ice Lake-U
Coffee Lake-S
Architecture
Base frecuency
1 GHz
2.8 GHz
Boost frecuency
3.6 GHz
4 GHz
Socket
BGA 1526
LGA 1151
Cores/Threads
4/8
6/6
TDP
15 W
65 W
Cache L1 (d+i)
4x32+4x48 kB
6x32+6x32 kB
Cache L2
4x512 kB
6x256 kB
Cache L3
6144 kB
9216 kB
Date
August 2019
September 2017
Mean monothread perf.
55.37k points
64.98k points
Mean multithread perf.
171.65k points
289.61k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i5-1035G1
i5-8400
Test#1 (Integers)
3.88k
4.08k (x1.05)
Test#2 (FP)
14.98k
14.96k (x1)
Test#3 (Generic, ZIP)
9.7k
4.98k (x0.51)
Test#1 (Memory)
8.6k
10.29k (x1.2)
TOTAL
37.15k
34.31k (x0.92)

Multithread

i5-1035G1

i5-8400
Test#1 (Integers)
14.61k
21.54k (x1.47)
Test#2 (FP)
54.9k
85.13k (x1.55)
Test#3 (Generic, ZIP)
27.58k
28.24k (x1.02)
Test#1 (Memory)
5.04k
4.08k (x0.81)
TOTAL
102.13k
139k (x1.36)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i5-1035G1
i5-8400
Test#1 (Integers)
21.5k
26.5k (x1.23)
Test#2 (FP)
17.71k
23.11k (x1.31)
Test#3 (Generic, ZIP)
7.92k
5.2k (x0.66)
Test#1 (Memory)
8.24k
10.16k (x1.23)
TOTAL
55.37k
64.98k (x1.17)

Multithread

i5-1035G1

i5-8400
Test#1 (Integers)
73.03k
135.08k (x1.85)
Test#2 (FP)
68.19k
121.49k (x1.78)
Test#3 (Generic, ZIP)
24.89k
27.53k (x1.11)
Test#1 (Memory)
5.54k
5.5k (x0.99)
TOTAL
171.65k
289.61k (x1.69)

Performance/W
i5-1035G1
i5-8400
Test#1 (Integers)
4869 points/W
2078 points/W
Test#2 (FP)
4546 points/W
1869 points/W
Test#3 (Generic, ZIP)
1660 points/W
424 points/W
Test#1 (Memory)
369 points/W
85 points/W
TOTAL
11443 points/W
4455 points/W

Performance/GHz
i5-1035G1
i5-8400
Test#1 (Integers)
5972 points/GHz
6626 points/GHz
Test#2 (FP)
4919 points/GHz
5778 points/GHz
Test#3 (Generic, ZIP)
2201 points/GHz
1300 points/GHz
Test#1 (Memory)
2290 points/GHz
2541 points/GHz
TOTAL
15381 points/GHz
16245 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4