| | | | | | |

Core i3-9100T vs Ryzen 5 3500U


Description
The i3-9100T is based on Coffee Lake architecture while the 3500U is based on Zen+.

Using the multithread performance as a reference, the i3-9100T gets a score of 192.9 k points while the 3500U gets 141 k points.

Summarizing, the i3-9100T is 1.4 times faster than the 3500U. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
906eb
810f81
Core
Coffee Lake-S
Picasso
Architecture
Base frecuency
3.1 GHz
2.1 GHz
Boost frecuency
3.7 GHz
3.7 GHz
Socket
LGA 1151
BGA-FP5
Cores/Threads
4/4
4/8
TDP
35 W
15 W
Cache L1 (d+i)
4x32+4x32 kB
4x64+6x32 kB
Cache L2
4x256 kB
4x512 kB
Cache L3
6144 kB
4096 kB
Date
June 2019
January 2019
Mean monothread perf.
60.16k points
36.64k points
Mean multithread perf.
192.88k points
140.97k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i3-9100T
3500U
Test#1 (Integers)
3.79k
3.24k (x0.86)
Test#2 (FP)
15.65k
13.16k (x0.84)
Test#3 (Generic, ZIP)
4.59k
4.41k (x0.96)
Test#1 (Memory)
7.78k
3.32k (x0.43)
TOTAL
31.81k
24.12k (x0.76)

Multithread

i3-9100T

3500U
Test#1 (Integers)
13.97k
12.95k (x0.93)
Test#2 (FP)
57.83k
57.84k (x1)
Test#3 (Generic, ZIP)
17.03k
21.05k (x1.24)
Test#1 (Memory)
4.35k
3.51k (x0.81)
TOTAL
93.18k
95.36k (x1.02)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i3-9100T
3500U
Test#1 (Integers)
13.74k
11.98k (x0.87)
Test#2 (FP)
19.7k
15.85k (x0.8)
Test#3 (Generic, ZIP)
4.86k
4.53k (x0.93)
Test#1 (Memory)
8.61k
3.29k (x0.38)
TOTAL
46.91k
35.65k (x0.76)

Multithread

i3-9100T

3500U
Test#1 (Integers)
50.5k
48.28k (x0.96)
Test#2 (FP)
72.58k
74.19k (x1.02)
Test#3 (Generic, ZIP)
18.09k
23.29k (x1.29)
Test#1 (Memory)
4.28k
3.47k (x0.81)
TOTAL
145.45k
149.23k (x1.03)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i3-9100T
3500U
Test#1 (Integers)
13.6k
11.1k (x0.82)
Test#2 (FP)
20.58k
18.97k (x0.92)
Test#3 (Generic, ZIP)
4.76k
3.9k (x0.82)
Test#1 (Memory)
8.8k
3.39k (x0.39)
TOTAL
47.74k
37.37k (x0.78)

Multithread

i3-9100T

3500U
Test#1 (Integers)
50.18k
45.74k (x0.91)
Test#2 (FP)
75.99k
75.47k (x0.99)
Test#3 (Generic, ZIP)
17.66k
21.89k (x1.24)
Test#1 (Memory)
4.12k
3.49k (x0.85)
TOTAL
147.95k
146.6k (x0.99)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i3-9100T
3500U
Test#1 (Integers)
24.89k
10.88k (x0.44)
Test#2 (FP)
21.82k
18.09k (x0.83)
Test#3 (Generic, ZIP)
4.83k
4.29k (x0.89)
Test#1 (Memory)
8.63k
3.36k (x0.39)
TOTAL
60.16k
36.64k (x0.61)

Multithread

i3-9100T

3500U
Test#1 (Integers)
89.4k
42.44k (x0.47)
Test#2 (FP)
81.19k
73.82k (x0.91)
Test#3 (Generic, ZIP)
18.06k
20.76k (x1.15)
Test#1 (Memory)
4.24k
3.96k (x0.93)
TOTAL
192.88k
140.97k (x0.73)

Performance/W
i3-9100T
3500U
Test#1 (Integers)
2554 points/W
2829 points/W
Test#2 (FP)
2320 points/W
4921 points/W
Test#3 (Generic, ZIP)
516 points/W
1384 points/W
Test#1 (Memory)
121 points/W
264 points/W
TOTAL
5511 points/W
9398 points/W

Performance/GHz
i3-9100T
3500U
Test#1 (Integers)
6727 points/GHz
2942 points/GHz
Test#2 (FP)
5897 points/GHz
4890 points/GHz
Test#3 (Generic, ZIP)
1304 points/GHz
1161 points/GHz
Test#1 (Memory)
2331 points/GHz
909 points/GHz
TOTAL
16260 points/GHz
9901 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4