| | | | | | |

Ryzen 7 2700X vs Core i7-4790K


Description
The 2700X is based on Zen+ architecture while the i7-4790K is based on Haswell.

Using the multithread performance as a reference, the 2700X gets a score of 431.1 k points while the i7-4790K gets 215.5 k points.

Summarizing, the 2700X is 2 times faster than the i7-4790K . To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
800f82
306c3
Core
Pinnacle Ridge
Haswell
Architecture
Base frecuency
3.7 GHz
4 GHz
Boost frecuency
4.3 GHz
4.4 GHz
Socket
AM4
LGA 1150
Cores/Threads
8/16
4/8
TDP
105 W
88 W
Cache L1 (d+i)
8x64+8x32 kB
32+32 kB
Cache L2
8x512 kB
256 kB
Cache L3
16384 kB
8192 kB
Date
April 2018
May 2014
Mean monothread perf.
64.83k points
52.47k points
Mean multithread perf.
431.14k points
215.47k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
2700X
i7-4790K
Test#1 (Integers)
4.25k
5.06k (x1.19)
Test#2 (FP)
19.72k
12.63k (x0.64)
Test#3 (Generic, ZIP)
5.84k
5.81k (x1)
Test#1 (Memory)
21.36k
4.96k (x0.23)
TOTAL
51.17k
28.47k (x0.56)

Multithread

2700X

i7-4790K
Test#1 (Integers)
35.04k
18.28k (x0.52)
Test#2 (FP)
181.42k
64.07k (x0.35)
Test#3 (Generic, ZIP)
64.86k
27.52k (x0.42)
Test#1 (Memory)
8.21k
7.97k (x0.97)
TOTAL
289.54k
117.84k (x0.41)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
2700X
i7-4790K
Test#1 (Integers)
15.22k
15.6k (x1.03)
Test#2 (FP)
24.12k
13.92k (x0.58)
Test#3 (Generic, ZIP)
5.87k
6.12k (x1.04)
Test#1 (Memory)
21k
5k (x0.24)
TOTAL
66.21k
40.65k (x0.61)

Multithread

2700X

i7-4790K
Test#1 (Integers)
126.81k
65.48k (x0.52)
Test#2 (FP)
229.86k
63.29k (x0.28)
Test#3 (Generic, ZIP)
61.74k
27.93k (x0.45)
Test#1 (Memory)
9.77k
7.84k (x0.8)
TOTAL
428.19k
164.54k (x0.38)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
2700X
i7-4790K
Test#1 (Integers)
14.44k
15.8k (x1.09)
Test#2 (FP)
24.92k
14.35k (x0.58)
Test#3 (Generic, ZIP)
5.8k
5.97k (x1.03)
Test#1 (Memory)
19.07k
5.17k (x0.27)
TOTAL
64.24k
41.29k (x0.64)

Multithread

2700X

i7-4790K
Test#1 (Integers)
122.01k
62.79k (x0.51)
Test#2 (FP)
220.34k
66.48k (x0.3)
Test#3 (Generic, ZIP)
59.89k
26.35k (x0.44)
Test#1 (Memory)
9.9k
8.74k (x0.88)
TOTAL
412.13k
164.36k (x0.4)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
2700X
i7-4790K
Test#1 (Integers)
15.34k
26.16k (x1.71)
Test#2 (FP)
25.75k
14.78k (x0.57)
Test#3 (Generic, ZIP)
5.79k
6.01k (x1.04)
Test#1 (Memory)
17.95k
5.52k (x0.31)
TOTAL
64.83k
52.47k (x0.81)

Multithread

2700X

i7-4790K
Test#1 (Integers)
123.07k
107.76k (x0.88)
Test#2 (FP)
239.3k
70.84k (x0.3)
Test#3 (Generic, ZIP)
60.6k
27.99k (x0.46)
Test#1 (Memory)
8.18k
8.87k (x1.09)
TOTAL
431.14k
215.47k (x0.5)

Performance/W
2700X
i7-4790K
Test#1 (Integers)
1172 points/W
1225 points/W
Test#2 (FP)
2279 points/W
805 points/W
Test#3 (Generic, ZIP)
577 points/W
318 points/W
Test#1 (Memory)
78 points/W
101 points/W
TOTAL
4106 points/W
2448 points/W

Performance/GHz
2700X
i7-4790K
Test#1 (Integers)
3568 points/GHz
5946 points/GHz
Test#2 (FP)
5987 points/GHz
3359 points/GHz
Test#3 (Generic, ZIP)
1347 points/GHz
1366 points/GHz
Test#1 (Memory)
4175 points/GHz
1254 points/GHz
TOTAL
15078 points/GHz
11925 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4