| | | | | | |

Ryzen 5 2400G vs Core i3-4030U


Description
The 2400G is based on Zen architecture while the i3-4030U is based on Haswell.

Using the multithread performance as a reference, the 2400G gets a score of 198.3 k points while the i3-4030U gets 46.1 k points.

Summarizing, the 2400G is 4.3 times faster than the i3-4030U. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
810f10
40651
Core
Raven Ridge
Haswell
Architecture
Base frecuency
3.6 GHz
1.9 GHz
Boost frecuency
3.9 GHz
1.9 GHz
Socket
AM4
BGA1168
Cores/Threads
4/8
2/4
TDP
65 W
15 W
Cache L1 (d+i)
4x64+4x32 kB
2x32+2x32 kB
Cache L2
4x512 kB
2x256 kB
Cache L3
4096 kB
3072 kB
Date
January 2018
April 2014
Mean monothread perf.
47.96k points
21.57k points
Mean multithread perf.
198.27k points
46.09k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
2400G
i3-4030U
Test#1 (Integers)
3.8k
2.14k (x0.56)
Test#2 (FP)
17.38k
5.4k (x0.31)
Test#3 (Generic, ZIP)
5.17k
2.37k (x0.46)
Test#1 (Memory)
3.16k
2.01k (x0.64)
TOTAL
29.52k
11.93k (x0.4)

Multithread

2400G

i3-4030U
Test#1 (Integers)
15.28k
3.94k (x0.26)
Test#2 (FP)
76.44k
13.68k (x0.18)
Test#3 (Generic, ZIP)
27.48k
5.78k (x0.21)
Test#1 (Memory)
3.02k
2.44k (x0.81)
TOTAL
122.2k
25.84k (x0.21)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
2400G
i3-4030U
Test#1 (Integers)
13.95k
6.7k (x0.48)
Test#2 (FP)
20.7k
5.99k (x0.29)
Test#3 (Generic, ZIP)
5.33k
2.65k (x0.5)
Test#1 (Memory)
3.03k
2.13k (x0.7)
TOTAL
43.01k
17.47k (x0.41)

Multithread

2400G

i3-4030U
Test#1 (Integers)
58.56k
14.3k (x0.24)
Test#2 (FP)
92.95k
13.83k (x0.15)
Test#3 (Generic, ZIP)
28.55k
6.12k (x0.21)
Test#1 (Memory)
2.98k
2.48k (x0.83)
TOTAL
183.04k
36.74k (x0.2)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
2400G
i3-4030U
Test#1 (Integers)
13.04k
6.4k (x0.49)
Test#2 (FP)
22.35k
6.2k (x0.28)
Test#3 (Generic, ZIP)
5.37k
2.5k (x0.47)
Test#1 (Memory)
3.4k
2.05k (x0.6)
TOTAL
44.15k
17.15k (x0.39)

Multithread

2400G

i3-4030U
Test#1 (Integers)
56.49k
12.86k (x0.23)
Test#2 (FP)
100.74k
15.12k (x0.15)
Test#3 (Generic, ZIP)
28.21k
5.76k (x0.2)
Test#1 (Memory)
3.04k
2.15k (x0.71)
TOTAL
188.49k
35.88k (x0.19)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
2400G
i3-4030U
Test#1 (Integers)
14.2k
10.69k (x0.75)
Test#2 (FP)
23.23k
6.16k (x0.27)
Test#3 (Generic, ZIP)
5.35k
2.49k (x0.47)
Test#1 (Memory)
5.18k
2.23k (x0.43)
TOTAL
47.96k
21.57k (x0.45)

Multithread

2400G

i3-4030U
Test#1 (Integers)
58.24k
21.84k (x0.38)
Test#2 (FP)
105.72k
15.86k (x0.15)
Test#3 (Generic, ZIP)
28.73k
5.94k (x0.21)
Test#1 (Memory)
5.59k
2.45k (x0.44)
TOTAL
198.27k
46.09k (x0.23)

Performance/W
2400G
i3-4030U
Test#1 (Integers)
896 points/W
1456 points/W
Test#2 (FP)
1626 points/W
1057 points/W
Test#3 (Generic, ZIP)
442 points/W
396 points/W
Test#1 (Memory)
86 points/W
163 points/W
TOTAL
3050 points/W
3073 points/W

Performance/GHz
2400G
i3-4030U
Test#1 (Integers)
3641 points/GHz
5627 points/GHz
Test#2 (FP)
5957 points/GHz
3241 points/GHz
Test#3 (Generic, ZIP)
1372 points/GHz
1312 points/GHz
Test#1 (Memory)
1327 points/GHz
1173 points/GHz
TOTAL
12298 points/GHz
11353 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4