| | | | | | |

Core i7-12700H vs i5-10500T


Description
The i7-12700H is based on Alder Lake architecture while the i5-10500T is based on Comet Lake.

Using the multithread performance as a reference, the i7-12700H gets a score of 643.3 k points while the i5-10500T gets 302.1 k points.

Summarizing, the i7-12700H is 2.1 times faster than the i5-10500T. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
906a3
a0653
Core
Alder Lake-H
Comet Lake-S
Architecture
Base frecuency
4.7 GHz
2.3 GHz
Boost frecuency
4.7 GHz
3.8 GHz
Socket
BGA 1744
LGA 1200
Cores/Threads
14/20
6/12
TDP
115 W
35 W
Cache L1 (d+i)
6x32/8x64+6x48/8x32 kB
6x32+6x32 kB
Cache L2
6x1280+6x2048 kB
6x256 kB
Cache L3
24576 kB
12288 kB
Date
January 2022
April 2020
Mean monothread perf.
93.12k points
64.6k points
Mean multithread perf.
643.29k points
302.13k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i7-12700H
i5-10500T
Test#1 (Integers)
7.95k
3.87k (x0.49)
Test#2 (FP)
19.74k
15.79k (x0.8)
Test#3 (Generic, ZIP)
13.29k
5.1k (x0.38)
Test#1 (Memory)
14.97k
12.13k (x0.81)
TOTAL
55.95k
36.89k (x0.66)

Multithread

i7-12700H

i5-10500T
Test#1 (Integers)
53.64k
22.17k (x0.41)
Test#2 (FP)
171.15k
101.79k (x0.59)
Test#3 (Generic, ZIP)
94.92k
34.13k (x0.36)
Test#1 (Memory)
9.24k
3.74k (x0.4)
TOTAL
328.95k
161.83k (x0.49)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i7-12700H
i5-10500T
Test#1 (Integers)
24.26k
13.94k (x0.57)
Test#2 (FP)
24.03k
20.01k (x0.83)
Test#3 (Generic, ZIP)
14.75k
5.34k (x0.36)
Test#1 (Memory)
12.08k
11.41k (x0.94)
TOTAL
75.12k
50.7k (x0.67)

Multithread

i7-12700H

i5-10500T
Test#1 (Integers)
199.99k
82.18k (x0.41)
Test#2 (FP)
218.01k
124.23k (x0.57)
Test#3 (Generic, ZIP)
102.62k
35.6k (x0.35)
Test#1 (Memory)
9.42k
3.73k (x0.4)
TOTAL
530.04k
245.75k (x0.46)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i7-12700H
i5-10500T
Test#1 (Integers)
25.81k
14.01k (x0.54)
Test#2 (FP)
26.18k
21.17k (x0.81)
Test#3 (Generic, ZIP)
14.71k
5.21k (x0.35)
Test#1 (Memory)
13.88k
11.42k (x0.82)
TOTAL
80.58k
51.82k (x0.64)

Multithread

i7-12700H

i5-10500T
Test#1 (Integers)
203.61k
82.38k (x0.4)
Test#2 (FP)
249.64k
115.64k (x0.46)
Test#3 (Generic, ZIP)
101.32k
32.22k (x0.32)
Test#1 (Memory)
9.55k
3.71k (x0.39)
TOTAL
564.12k
233.94k (x0.41)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i7-12700H
i5-10500T
Test#1 (Integers)
41.64k
25.16k (x0.6)
Test#2 (FP)
25.48k
22.28k (x0.87)
Test#3 (Generic, ZIP)
13.2k
5.18k (x0.39)
Test#1 (Memory)
12.8k
11.97k (x0.94)
TOTAL
93.12k
64.6k (x0.69)

Multithread

i7-12700H

i5-10500T
Test#1 (Integers)
276.56k
144.86k (x0.52)
Test#2 (FP)
251.6k
120.98k (x0.48)
Test#3 (Generic, ZIP)
104.55k
32.55k (x0.31)
Test#1 (Memory)
10.58k
3.73k (x0.35)
TOTAL
643.29k
302.13k (x0.47)

Performance/W
i7-12700H
i5-10500T
Test#1 (Integers)
2405 points/W
4139 points/W
Test#2 (FP)
2188 points/W
3457 points/W
Test#3 (Generic, ZIP)
909 points/W
930 points/W
Test#1 (Memory)
92 points/W
107 points/W
TOTAL
5594 points/W
8632 points/W

Performance/GHz
i7-12700H
i5-10500T
Test#1 (Integers)
8859 points/GHz
6621 points/GHz
Test#2 (FP)
5422 points/GHz
5863 points/GHz
Test#3 (Generic, ZIP)
2808 points/GHz
1364 points/GHz
Test#1 (Memory)
2724 points/GHz
3151 points/GHz
TOTAL
19813 points/GHz
16999 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4