| | | | | | |

Core i3-1215U vs i7-8550U


Description
The i3-1215U is based on Alder Lake architecture while the i7-8550U is based on Kaby Lake.

Using the multithread performance as a reference, the i3-1215U gets a score of 185.6 k points while the i7-8550U gets 166.1 k points.

Summarizing, the i3-1215U is 1.1 times faster than the i7-8550U. To get a proper comparison between both models, take a look to the data shown below.

Specs
CPUID
906a4
806ea
Core
Alder Lake-H
Kaby Lake-R
Architecture
Base frecuency
0.9 GHz
1.8 GHz
Boost frecuency
4.4 GHz
4 GHz
Socket
BGA 1744
BGA1356
Cores/Threads
6/8
4/8
TDP
15 W
15 W
Cache L1 (d+i)
2x32/4x64+2x48/4x32 kB
4x32+4x32 kB
Cache L2
2x1280+2x2048 kB
4x256 kB
Cache L3
10240 kB
8192 kB
Date
April 2022
August 2017
Mean monothread perf.
80.34k points
64.2k points
Mean multithread perf.
185.6k points
166.12k points

Non-optimized benchmark
The benchmark in Mode 0 (FPU) measures cpu performance with non-optimized software. It uses the basic µinstructions from the i386 architecture with the i387 floating point unit. This mode is compatible with all CPUs so it's practical to compare very different CPUs
Monothread
i3-1215U
i7-8550U
Test#1 (Integers)
6.95k
3.91k (x0.56)
Test#2 (FP)
16.28k
15.98k (x0.98)
Test#3 (Generic, ZIP)
10.49k
5.11k (x0.49)
Test#1 (Memory)
9.95k
11.05k (x1.11)
TOTAL
43.67k
36.05k (x0.83)

Multithread

i3-1215U

i7-8550U
Test#1 (Integers)
14.97k
11.76k (x0.79)
Test#2 (FP)
51.01k
50.15k (x0.98)
Test#3 (Generic, ZIP)
30.47k
16.76k (x0.55)
Test#1 (Memory)
8.59k
4.17k (x0.49)
TOTAL
105.05k
82.84k (x0.79)

SSE3 optimized benchmark
The benchmark in mode I (SSE) is optimized for the use of SIMD instructions with 128 bits register and the SSE set up to version 3. Nearly every modern CPU has support for this mode.
Monothread
i3-1215U
i7-8550U
Test#1 (Integers)
20.87k
12.93k (x0.62)
Test#2 (FP)
20.74k
20.59k (x0.99)
Test#3 (Generic, ZIP)
11.32k
5.41k (x0.48)
Test#1 (Memory)
8.32k
10.48k (x1.26)
TOTAL
61.26k
49.41k (x0.81)

Multithread

i3-1215U

i7-8550U
Test#1 (Integers)
45.12k
41.11k (x0.91)
Test#2 (FP)
60.59k
65.04k (x1.07)
Test#3 (Generic, ZIP)
28.48k
17.53k (x0.62)
Test#1 (Memory)
14.06k
4.22k (x0.3)
TOTAL
148.26k
127.9k (x0.86)

AVX optimized benchmark
The benchmark in mode II (AVX) is optimized to used 256 bits registers beside the first version of the Advanced Vector Extensions (AVX). The first AVX compatible CPU was released in 2011.
Monothread
i3-1215U
i7-8550U
Test#1 (Integers)
15.63k
13.15k (x0.84)
Test#2 (FP)
20.2k
19.7k (x0.98)
Test#3 (Generic, ZIP)
9.94k
5.1k (x0.51)
Test#1 (Memory)
8.06k
9.21k (x1.14)
TOTAL
53.83k
47.16k (x0.88)

Multithread

i3-1215U

i7-8550U
Test#1 (Integers)
35.72k
34.13k (x0.96)
Test#2 (FP)
56.41k
53.79k (x0.95)
Test#3 (Generic, ZIP)
25k
13.91k (x0.56)
Test#1 (Memory)
12.48k
4.12k (x0.33)
TOTAL
129.6k
105.95k (x0.82)

AVX2 optimized benchmark
The benchmark in mode III (AVX2), like AVX1, is optimized to used 256 bits registers beside the second version of the Advanced Vector Extensions (AVX). The first AVX2 compatible CPU was released in 2013.
Monothread
i3-1215U
i7-8550U
Test#1 (Integers)
37.56k
25.37k (x0.68)
Test#2 (FP)
21.13k
22.6k (x1.07)
Test#3 (Generic, ZIP)
11.35k
5.13k (x0.45)
Test#1 (Memory)
10.31k
11.1k (x1.08)
TOTAL
80.34k
64.2k (x0.8)

Multithread

i3-1215U

i7-8550U
Test#1 (Integers)
73.97k
72.82k (x0.98)
Test#2 (FP)
72.37k
71.71k (x0.99)
Test#3 (Generic, ZIP)
29.61k
17.35k (x0.59)
Test#1 (Memory)
9.65k
4.24k (x0.44)
TOTAL
185.6k
166.12k (x0.9)

Performance/W
i3-1215U
i7-8550U
Test#1 (Integers)
4931 points/W
4855 points/W
Test#2 (FP)
4825 points/W
4781 points/W
Test#3 (Generic, ZIP)
1974 points/W
1157 points/W
Test#1 (Memory)
643 points/W
282 points/W
TOTAL
12374 points/W
11075 points/W

Performance/GHz
i3-1215U
i7-8550U
Test#1 (Integers)
8535 points/GHz
6343 points/GHz
Test#2 (FP)
4802 points/GHz
5650 points/GHz
Test#3 (Generic, ZIP)
2579 points/GHz
1282 points/GHz
Test#1 (Memory)
2343 points/GHz
2774 points/GHz
TOTAL
18258 points/GHz
16049 points/GHz

Monothread performance graph
Monothread performance graphics gives the performance vs time. They are useful to measure the time it takes to the CPU to reach the maximum performance.

Usually, CPU's performance will be steady during these tests but if it has a slow frequency strategy, the first samples will show a lower score.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Multithread performance graph
Multithread graphs measure the performance against a heavy load during certain time.

If CPU's TDP doesn't limit the frequency and the machine is properly cooled, performance should remain steady vs time. Otherwise, the performance score will oscillate or decrease over time.


Test#1 (Integers) [points vs time]

grafica bm.hardlimit.com


Test#2 (FP) [points vs time]

grafica bm.hardlimit.com


Test#3 (Generic, ZIP) [points vs time]

grafica bm.hardlimit.com


Test#1 (Memory) [points vs time]

grafica bm.hardlimit.com

Hardlimit Benchmark Central - Ver. 3.11.4